
    [ThF                        % S r SSKrSSKrSSKrSSKJr  SSKJr  SSKJ	r	J
r
Jr  SSKrSSKJr  \R                  " \5      r " S S\5      r\	\R$                  \\R(                     /\4   r0 r\\\
\   4   \S	'   0 r\\\4   \S
'      SS\
\   S\
\   S\\   4S jjr\R8                  " \SS9r\R8                  " \SS9rS rSS\\   4S jjr \RB                  " S5      S 5       r"\RB                  " S5      S 5       r#g)a  
This module implements TorchDynamo's backend registry system for managing compiler backends.

The registry provides a centralized way to register, discover and manage different compiler
backends that can be used with torch.compile(). It handles:

- Backend registration and discovery through decorators and entry points
- Lazy loading of backend implementations
- Lookup and validation of backend names
- Categorization of backends using tags (debug, experimental, etc.)

Key components:
- CompilerFn: Type for backend compiler functions that transform FX graphs
- _BACKENDS: Registry mapping backend names to entry points
- _COMPILER_FNS: Registry mapping backend names to loaded compiler functions

Example usage:
    @register_backend
    def my_compiler(fx_graph, example_inputs):
        # Transform FX graph into optimized implementation
        return compiled_fn

    # Use registered backend
    torch.compile(model, backend="my_compiler")

The registry also supports discovering backends through setuptools entry points
in the "torch_dynamo_backends" group. Example:
```
setup.py
---
from setuptools import setup

setup(
    name='my_torch_backend',
    version='0.1',
    packages=['my_torch_backend'],
    entry_points={
        'torch_dynamo_backends': [
            # name = path to entry point of backend implementation
            'my_compiler = my_torch_backend.compiler:my_compiler_function',
        ],
    },
)
```
```
my_torch_backend/compiler.py
---
def my_compiler_function(fx_graph, example_inputs):
    # Transform FX graph into optimized implementation
    return compiled_fn
```
Using `my_compiler` backend:
```
import torch

model = ...  # Your PyTorch model
optimized_model = torch.compile(model, backend="my_compiler")
```
    N)Sequence)
EntryPoint)CallableOptionalProtocol)fxc                   X    \ rS rSrS\R
                  S\\R
                  S4   4S jrSrg)
CompiledFnM   argsreturn.c                     g )N )selfr   s     W/var/www/auris/envauris/lib/python3.13/site-packages/torch/_dynamo/backends/registry.py__call__CompiledFn.__call__N   s        r   N)	__name__
__module____qualname____firstlineno__torchTensortupler   __static_attributes__r   r   r   r
   r
   M   s!    LellLuU\\35F/GLr   r
   	_BACKENDS_COMPILER_FNScompiler_fnnametagsc                    U c  [         R                  " [        XS9$ [        U 5      (       d   eU=(       d    U R                  nU[
        ;  d
   SU 35       eU [        ;  a	  S[        U'   U [
        U'   [        U5      U l        U $ )a  
Decorator to add a given compiler to the registry to allow calling
`torch.compile` with string shorthand.  Note: for projects not
imported by default, it might be easier to pass a function directly
as a backend and not use a string.

Args:
    compiler_fn: Callable taking a FX graph and fake tensor inputs
    name: Optional name, defaults to `compiler_fn.__name__`
    tags: Optional set of string tags to categorize backend with
N)r    r!   zduplicate name: )		functoolspartialregister_backendcallabler   r   r   r   _tags)r   r    r!   s      r   r%   r%   W   s        !1HHK    ';''D}$?(8&??$)#	$%M$dKr   )debug)r!   )experimentalc                     [        U [        5      (       a^  U [        ;  a
  [        5         U [        ;  a  SSKJn  U" U S9eU [        ;  a!  [        U    n[        UR                  5       U S9  [        U    n U $ )z#Expand backend strings to functions   )InvalidBackend)r    )r   r    )	
isinstancestrr   _lazy_importexcr,   r   r%   load)r   r,   entry_points      r   lookup_backendr3   z   sg    +s##i'Ni', k22m+#K0K)9)9);+N#K0r   r   c                    [        5         [        U =(       d    S5      n [        R                  5        Vs/ s H8  nU[        ;  d)  U R                  [        U   R                  5      (       a  M6  UPM:     nn[        U5      $ s  snf )zU
Return valid strings that can be passed to:

    torch.compile(..., backend="name")
r   )r/   setr   keysr   intersectionr'   sorted)exclude_tagsr    backendss      r   list_backendsr;      st     N|)r*L NN$$D}$((t)<)B)BC 	$   (s   5B.Bc                  V    SSK Jn   SSKJn  U" U 5        SSKJn  Uc   e[        5         g )Nr+   )r:   )import_submodule)dynamo_minifier_backend) r:   utilsr=   repro.after_dynamor>   _discover_entrypoint_backends)r:   r=   r>   s      r   r/   r/      s%    (X<"...!#r   c                     SSK Jn   Sn[        R                  S:  a/  U " 5       nX;   a  X!   O/ nU Vs0 s H  o3R                  U_M     nnO$U " US9nUR
                   Vs0 s H  oDX$   _M	     nnU H  nX%   [        U'   M     g s  snf s  snf )Nr   )entry_pointstorch_dynamo_backends)   
   )group)importlib.metadatarD   sysversion_infor    namesr   )rD   
group_nameepsepr    backend_names         r   rB   rB      s     0(J
'!n!+!2co%()Srww{S),+.99594SY95"%"3	, 	 * 6s   B B
)NNr   ))r(   r)   )$__doc__r#   loggingrJ   collections.abcr   rI   r   typingr   r   r   r   r   	getLoggerr   logr
   GraphModulelistr   
CompilerFnr   dictr.   __annotations__r   r%   r$   register_debug_backendregister_experimental_backendr3   r;   	lru_cacher/   rB   r   r   r   <module>r_      sN  :x   
 $ ) / /   !M M r~~tELL'9:JFG
-/	4Xj))* /')tCO$ ) )-*%
3- 3-: #**+;*M  ) 1 1,! 
"T#Y $ T
$ 
$ T4 4r   