
    \ho6                     ~   S SK Jr  S SKJr  S SKJr  S SKJr  S SKJ	r	  S SK
JrJr  S SKJr  S SKJr  S S	KJr  S S
KJr  SSKJrJrJrJrJrJrJrJrJrJrJ r J!r!J"r"J#r#J$r$J%r%J&r&J'r'J(r(  / SQr)SSS.S jjr*SS jr+SS jr,\,r-SS jr.SS jr/SS jr0SSS.S jjr1SS jr2SS jr3SS jr4SS jr5S S jr6SS jr7\r8\r9\.r:g)!    )	FiniteSet)Rational)Eq)Dummy)FallingFactorial)explog)sqrt)piecewise_fold)Integral)solveset   )probabilityexpectationdensitywheregivenpspacecdfPSpacecharacteristic_functionsamplesample_iterrandom_symbolsindependent	dependentsampling_densitymoment_generating_functionquantile	is_randomsample_stochastic_process)PEHr   r   r   r   r   r   r   r   variancestdskewnesskurtosis
covariancer   entropymedianr   r   correlationfactorial_momentmomentcmomentr   r   smomentr   r!   NT)evaluatec                    SSK Jn  U(       a  U" XX#5      R                  5       $ U" XX#5      R                  [        5      $ )a  
Return the nth moment of a random expression about c.

.. math::
    moment(X, c, n) = E((X-c)^{n})

Default value of c is 0.

Examples
========

>>> from sympy.stats import Die, moment, E
>>> X = Die('X', 6)
>>> moment(X, 1, 6)
-5/2
>>> moment(X, 2)
91/6
>>> moment(X, 1) == E(X)
True
r   )Moment) sympy.stats.symbolic_probabilityr3   doitrewriter   )Xnc	conditionr1   kwargsr3   s          P/var/www/auris/envauris/lib/python3.13/site-packages/sympy/stats/rv_interface.pyr.   r.      s8    * 8aA)..00!%--h77    c                     [        U 5      (       a%  [        U 5      [        5       :X  a  SSKJn  U" X5      $ [        U SU40 UD6$ )aE  
Variance of a random expression.

.. math::
    variance(X) = E((X-E(X))^{2})

Examples
========

>>> from sympy.stats import Die, Bernoulli, variance
>>> from sympy import simplify, Symbol

>>> X = Die('X', 6)
>>> p = Symbol('p')
>>> B = Bernoulli('B', p, 1, 0)

>>> variance(2*X)
35/3

>>> simplify(variance(B))
p*(1 - p)
r   )Variance   )r    r   r   r4   r?   r/   )r7   r:   r;   r?   s       r<   r%   r%   5   s<    . ||q	VX-=%%1a-f--r=   c                 ,    [        [        X40 UD65      $ )a  
Standard Deviation of a random expression

.. math::
    std(X) = \sqrt(E((X-E(X))^{2}))

Examples
========

>>> from sympy.stats import Bernoulli, std
>>> from sympy import Symbol, simplify

>>> p = Symbol('p')
>>> B = Bernoulli('B', p, 1, 0)

>>> simplify(std(B))
sqrt(p*(1 - p))
)r
   r%   r7   r:   r;   s      r<   standard_deviationrC   S   s    & 0011r=   c                    ^ [        X40 UD6nUR                  S[        S5      5      m[        U[        5      (       a#  [        U4S jUR                  5        5       5      $ [        [        U" U 5      T5      * 5      $ )a	  
Calculates entropy of a probability distribution.

Parameters
==========

expression : the random expression whose entropy is to be calculated
condition : optional, to specify conditions on random expression
b: base of the logarithm, optional
   By default, it is taken as Euler's number

Returns
=======

result : Entropy of the expression, a constant

Examples
========

>>> from sympy.stats import Normal, Die, entropy
>>> X = Normal('X', 0, 1)
>>> entropy(X)
log(2)/2 + 1/2 + log(pi)/2

>>> D = Die('D', 4)
>>> entropy(D)
log(4)

References
==========

.. [1] https://en.wikipedia.org/wiki/Entropy_%28information_theory%29
.. [2] https://www.crmarsh.com/static/pdf/Charles_Marsh_Continuous_Entropy.pdf
.. [3] https://kconrad.math.uconn.edu/blurbs/analysis/entropypost.pdf
br   c              3   B   >#    U  H  o* [        UT5      -  v   M     g 7fN)r	   ).0probbases     r<   	<genexpr>entropy.<locals>.<genexpr>   s     FuSt_,s   )	r   getr   
isinstancedictsumvaluesr   r	   )exprr:   r;   pdfrJ   s       @r<   r*   r*   i   sf    H $
,V
,C::c3q6"D#tFFFFCIt,,--r=   c           	         [        U 5      (       a  [        U 5      [        5       :X  d'  [        U5      (       a&  [        U5      [        5       :X  a  SSKJn  U" XU5      $ [        U [        X40 UD6-
  U[        X40 UD6-
  -  U40 UD6$ )a  
Covariance of two random expressions.

Explanation
===========

The expectation that the two variables will rise and fall together

.. math::
    covariance(X,Y) = E((X-E(X)) (Y-E(Y)))

Examples
========

>>> from sympy.stats import Exponential, covariance
>>> from sympy import Symbol

>>> rate = Symbol('lambda', positive=True, real=True)
>>> X = Exponential('X', rate)
>>> Y = Exponential('Y', rate)

>>> covariance(X, X)
lambda**(-2)
>>> covariance(X, Y)
0
>>> covariance(X, Y + rate*X)
1/lambda
r   )
Covariance)r    r   r   r4   rU   r   )r7   Yr:   r;   rU   s        r<   r)   r)      s    : 	!fh.IaLLVAYRXRZEZ?!	**	
[00	0	
[00	0	2  r=   c                 P    [        XU40 UD6[        X40 UD6[        X40 UD6-  -  $ )aa  
Correlation of two random expressions, also known as correlation
coefficient or Pearson's correlation.

Explanation
===========

The normalized expectation that the two variables will rise
and fall together

.. math::
    correlation(X,Y) = E((X-E(X))(Y-E(Y)) / (\sigma_x  \sigma_y))

Examples
========

>>> from sympy.stats import Exponential, correlation
>>> from sympy import Symbol

>>> rate = Symbol('lambda', positive=True, real=True)
>>> X = Exponential('X', rate)
>>> Y = Exponential('Y', rate)

>>> correlation(X, X)
1
>>> correlation(X, Y)
0
>>> correlation(X, Y + rate*X)
1/sqrt(1 + lambda**(-2))
)r)   r&   )r7   rV   r:   r;   s       r<   r,   r,      s;    > aI00#a2Mf2M
1"6"3# $ $r=   c                    SSK Jn  U(       a  U" XU5      R                  5       $ U" XU5      R                  [        5      $ )a$  
Return the nth central moment of a random expression about its mean.

.. math::
    cmoment(X, n) = E((X - E(X))^{n})

Examples
========

>>> from sympy.stats import Die, cmoment, variance
>>> X = Die('X', 6)
>>> cmoment(X, 3)
0
>>> cmoment(X, 2)
35/12
>>> cmoment(X, 2) == variance(X)
True
r   )CentralMoment)r4   rY   r5   r6   r   )r7   r8   r:   r1   r;   rY   s         r<   r/   r/      s8    & ?Q9-2244y)11(;;r=   c                 F    [        X40 UD6nSU-  U-  [        XU40 UD6-  $ )a  
Return the nth Standardized moment of a random expression.

.. math::
    smoment(X, n) = E(((X - \mu)/\sigma_X)^{n})

Examples
========

>>> from sympy.stats import skewness, Exponential, smoment
>>> from sympy import Symbol
>>> rate = Symbol('lambda', positive=True, real=True)
>>> Y = Exponential('Y', rate)
>>> smoment(Y, 4)
9
>>> smoment(Y, 4) == smoment(3*Y, 4)
True
>>> smoment(Y, 3) == skewness(Y)
True
r   )r&   r/   )r7   r8   r:   r;   sigmas        r<   r0   r0      s2    * ''EeGa<i:6:::r=   c                      [        U S4SU0UD6$ )a  
Measure of the asymmetry of the probability distribution.

Explanation
===========

Positive skew indicates that most of the values lie to the right of
the mean.

.. math::
    skewness(X) = E(((X - E(X))/\sigma_X)^{3})

Parameters
==========

condition : Expr containing RandomSymbols
        A conditional expression. skewness(X, X>0) is skewness of X given X > 0

Examples
========

>>> from sympy.stats import skewness, Exponential, Normal
>>> from sympy import Symbol
>>> X = Normal('X', 0, 1)
>>> skewness(X)
0
>>> skewness(X, X > 0) # find skewness given X > 0
(-sqrt(2)/sqrt(pi) + 4*sqrt(2)/pi**(3/2))/(1 - 2/pi)**(3/2)

>>> rate = Symbol('lambda', positive=True, real=True)
>>> Y = Exponential('Y', rate)
>>> skewness(Y)
2
   r:   r0   rB   s      r<   r'   r'     s    F 1a79777r=   c                      [        U S4SU0UD6$ )a  
Characterizes the tails/outliers of a probability distribution.

Explanation
===========

Kurtosis of any univariate normal distribution is 3. Kurtosis less than
3 means that the distribution produces fewer and less extreme outliers
than the normal distribution.

.. math::
    kurtosis(X) = E(((X - E(X))/\sigma_X)^{4})

Parameters
==========

condition : Expr containing RandomSymbols
        A conditional expression. kurtosis(X, X>0) is kurtosis of X given X > 0

Examples
========

>>> from sympy.stats import kurtosis, Exponential, Normal
>>> from sympy import Symbol
>>> X = Normal('X', 0, 1)
>>> kurtosis(X)
3
>>> kurtosis(X, X > 0) # find kurtosis given X > 0
(-4/pi - 12/pi**2 + 3)/(1 - 2/pi)**2

>>> rate = Symbol('lamda', positive=True, real=True)
>>> Y = Exponential('Y', rate)
>>> kurtosis(Y)
9

References
==========

.. [1] https://en.wikipedia.org/wiki/Kurtosis
.. [2] https://mathworld.wolfram.com/Kurtosis.html
   r:   r^   rB   s      r<   r(   r(   3  s    T 1a79777r=   c                 0    [        [        X5      4SU0UD6$ )a>  
The factorial moment is a mathematical quantity defined as the expectation
or average of the falling factorial of a random variable.

.. math::
    factorial-moment(X, n) = E(X(X - 1)(X - 2)...(X - n + 1))

Parameters
==========

n: A natural number, n-th factorial moment.

condition : Expr containing RandomSymbols
        A conditional expression.

Examples
========

>>> from sympy.stats import factorial_moment, Poisson, Binomial
>>> from sympy import Symbol, S
>>> lamda = Symbol('lamda')
>>> X = Poisson('X', lamda)
>>> factorial_moment(X, 2)
lamda**2
>>> Y = Binomial('Y', 2, S.Half)
>>> factorial_moment(Y, 2)
1/2
>>> factorial_moment(Y, 2, Y > 1) # find factorial moment for Y > 1
2

References
==========

.. [1] https://en.wikipedia.org/wiki/Factorial_moment
.. [2] https://mathworld.wolfram.com/FactorialMoment.html
r:   )r   r   )r7   r8   r:   r;   s       r<   r-   r-   `  s     J '-MMfMMr=   c           	         [        U 5      (       d  U $ SSKJn  SSKJn  SSKJn  [        [        U 5      U5      (       a  [        U 5      R                  U 5      n/ nUR                  " 5        Ha  u  pU	[        SS5      :  d  M  SU	-
  [        U 5      R                  [        X5      5      -   [        SS5      :  d  MP  UR                  U5        Mc     [        U6 $ [        [        U 5      X445      (       ac  [        U 5      R                  U 5      n[!        S5      n
[#        [%        U" U
5      [        SS5      -
  5      U
[        U 5      R&                  5      nU$ [)        S[+        [        U 5      5      -  5      e)	a  
Calculates the median of the probability distribution.

Explanation
===========

Mathematically, median of Probability distribution is defined as all those
values of `m` for which the following condition is satisfied

.. math::
    P(X\leq m) \geq  \frac{1}{2} \text{ and} \text{ } P(X\geq m)\geq \frac{1}{2}

Parameters
==========

X: The random expression whose median is to be calculated.

Returns
=======

The FiniteSet or an Interval which contains the median of the
random expression.

Examples
========

>>> from sympy.stats import Normal, Die, median
>>> N = Normal('N', 3, 1)
>>> median(N)
{3}
>>> D = Die('D')
>>> median(D)
{3, 4}

References
==========

.. [1] https://en.wikipedia.org/wiki/Median#Probability_distributions

r   )ContinuousPSpace)DiscretePSpace)FinitePSpacer   r@   xz$The median of %s is not implemented.)r    sympy.stats.crvrc   sympy.stats.drvrd   sympy.stats.frvre   rN   r   compute_cdfitemsr   r   r   appendr   r   r   r   setNotImplementedErrorstr)r7   r1   r;   rc   rd   re   r   resultkeyvaluerf   s              r<   r+   r+     s*   R Q<<0.,&)\**Qi##A&))+JCx1~%1u91I!!"Q*-+.19!Q+@c" & &!!&).?@@Qi##A&#J.Q(1a.)@A1fQimmT
DSPQ^S
TTr=   c           	          [        U [        X40 UD6-
  U[        X40 UD6-
  -  U[        X#40 UD6-
  -  U40 UD6n[        X40 UD6[        X40 UD6-  [        X#40 UD6-  nXV-  $ )a  
Calculates the co-skewness of three random variables.

Explanation
===========

Mathematically Coskewness is defined as

.. math::
    coskewness(X,Y,Z)=\frac{E[(X-E[X]) * (Y-E[Y]) * (Z-E[Z])]} {\sigma_{X}\sigma_{Y}\sigma_{Z}}

Parameters
==========

X : RandomSymbol
        Random Variable used to calculate coskewness
Y : RandomSymbol
        Random Variable used to calculate coskewness
Z : RandomSymbol
        Random Variable used to calculate coskewness
condition : Expr containing RandomSymbols
        A conditional expression

Examples
========

>>> from sympy.stats import coskewness, Exponential, skewness
>>> from sympy import symbols
>>> p = symbols('p', positive=True)
>>> X = Exponential('X', p)
>>> Y = Exponential('Y', 2*p)
>>> coskewness(X, Y, Y)
0
>>> coskewness(X, Y + X, Y + 2*X)
16*sqrt(85)/85
>>> coskewness(X + 2*Y, Y + X, Y + 2*X, X > 3)
9*sqrt(170)/85
>>> coskewness(Y, Y, Y) == skewness(Y)
True
>>> coskewness(X, Y + p*X, Y + 2*p*X)
4/(sqrt(1 + 1/(4*p**2))*sqrt(4 + 1/(4*p**2)))

Returns
=======

coskewness : The coskewness of the three random variables

References
==========

.. [1] https://en.wikipedia.org/wiki/Coskewness

)r   r&   )r7   rV   Zr:   r;   numdens          r<   
coskewnessrw     s    l q;q>v>>A3F335A3F3356?KCIKC a
%f
%A(CF(C
Cq&v&'C7Nr=   )r   NrG   )T);
sympy.setsr   sympy.core.numbersr   sympy.core.relationalr   sympy.core.symbolr   (sympy.functions.combinatorial.factorialsr   &sympy.functions.elementary.exponentialr   r	   (sympy.functions.elementary.miscellaneousr
   $sympy.functions.elementary.piecewiser   sympy.integrals.integralsr   sympy.solvers.solvesetr   rvr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   __all__r.   r%   rC   r&   r*   r)   r,   r/   r0   r'   r(   r-   r+   rw   r"   r#   r$    r=   r<   <module>r      s      ' $ # E = 9 ? . +, , , , , ,<8$ 86.<2( (.T$N $F<d <2;0#8J*8Z%NN=U@;| r=   