
    \h	                     @    S SK JrJrJr  S SKJrJrJrJrJ	r	  S r
S rg)    )SpiRational)assoc_laguerresqrtexp	factorial
factorial2c           	         [        [        XX#/5      u  pp#U S-   n [        SU-  U[        SS5      -   -  SX-   S-   -  -  [	        U S-
  5      -  [        [
        5      [        SU -  SU-  -   S-
  5      -  -  5      nXCU-  -  [        U* US-  -  5      -  [        U S-
  U[        R                  -   SU-  US-  -  5      -  $ )a  
Returns the radial wavefunction R_{nl} for a 3d isotropic harmonic
oscillator.

Parameters
==========

n :
    The "nodal" quantum number.  Corresponds to the number of nodes in
    the wavefunction.  ``n >= 0``
l :
    The quantum number for orbital angular momentum.
nu :
    mass-scaled frequency: nu = m*omega/(2*hbar) where `m` is the mass
    and `omega` the frequency of the oscillator.
    (in atomic units ``nu == omega/2``)
r :
    Radial coordinate.

Examples
========

>>> from sympy.physics.sho import R_nl
>>> from sympy.abc import r, nu, l
>>> R_nl(0, 0, 1, r)
2*2**(3/4)*exp(-r**2)/pi**(1/4)
>>> R_nl(1, 0, 1, r)
4*2**(1/4)*sqrt(3)*(3/2 - 2*r**2)*exp(-r**2)/(3*pi**(1/4))

l, nu and r may be symbolic:

>>> R_nl(0, 0, nu, r)
2*2**(3/4)*sqrt(nu**(3/2))*exp(-nu*r**2)/pi**(1/4)
>>> R_nl(0, l, 1, r)
r**l*sqrt(2**(l + 3/2)*2**(l + 2)/factorial2(2*l + 1))*exp(-r**2)/pi**(1/4)

The normalization of the radial wavefunction is:

>>> from sympy import Integral, oo
>>> Integral(R_nl(0, 0, 1, r)**2*r**2, (r, 0, oo)).n()
1.00000000000000
>>> Integral(R_nl(1, 0, 1, r)**2*r**2, (r, 0, oo)).n()
1.00000000000000
>>> Integral(R_nl(1, 1, 1, r)**2*r**2, (r, 0, oo)).n()
1.00000000000000

         )
mapr   r   r   r	   r   r
   r   r   Half)nlnurCs        I/var/www/auris/envauris/lib/python3.13/site-packages/sympy/physics/sho.pyR_nlr      s    ` a!'KA" 	
AAda(1a.()!aeai.81q59II"Xz!A#!)a-013	A V8CAqDM!.QAFF
AbDAI"NNN    c                 2    SU -  U-   [        SS5      -   U-  $ )a  
Returns the Energy of an isotropic harmonic oscillator.

Parameters
==========

n :
    The "nodal" quantum number.
l :
    The orbital angular momentum.
hw :
    The harmonic oscillator parameter.

Notes
=====

The unit of the returned value matches the unit of hw, since the energy is
calculated as:

    E_nl = (2*n + l + 3/2)*hw

Examples
========

>>> from sympy.physics.sho import E_nl
>>> from sympy import symbols
>>> x, y, z = symbols('x, y, z')
>>> E_nl(x, y, z)
z*(2*x + y + 3/2)
r   r   )r   )r   r   hws      r   E_nlr   @   s"    > aC!Ghq!n$b((r   N)
sympy.corer   r   r   sympy.functionsr   r   r   r	   r
   r   r    r   r   <module>r      s    & & L L8Ov)r   