
    \h                     P    S SK JrJr  S SKJr  S SKJr  S SKJr  S SK	J
r
  S rS rg)	    )Ipi)S)exp)sqrt)hbarc                 |    [        U 5      [        U5      p[        U [        -  U-  5      [        S[        -  5      -  $ )aR  
Returns the wavefunction for particle on ring.

Parameters
==========

n : The quantum number.
    Here ``n`` can be positive as well as negative
    which can be used to describe the direction of motion of particle.
x :
    The angle.

Examples
========

>>> from sympy.physics.pring import wavefunction
>>> from sympy import Symbol, integrate, pi
>>> x=Symbol("x")
>>> wavefunction(1, x)
sqrt(2)*exp(I*x)/(2*sqrt(pi))
>>> wavefunction(2, x)
sqrt(2)*exp(2*I*x)/(2*sqrt(pi))
>>> wavefunction(3, x)
sqrt(2)*exp(3*I*x)/(2*sqrt(pi))

The normalization of the wavefunction is:

>>> integrate(wavefunction(2, x)*wavefunction(-2, x), (x, 0, 2*pi))
1
>>> integrate(wavefunction(4, x)*wavefunction(-4, x), (x, 0, 2*pi))
1

References
==========

.. [1] Atkins, Peter W.; Friedman, Ronald (2005). Molecular Quantum
       Mechanics (4th ed.).  Pages 71-73.

   )r   r   r   r   r   )nxs     K/var/www/auris/envauris/lib/python3.13/site-packages/sympy/physics/pring.pywavefunctionr      s3    R Q41qq1uqy>DRL((    c                     [        U 5      [        U5      [        U5      p!n U R                  (       a  U S-  [        S-  -  SU-  US-  -  -  $ [        S5      e)ae  
Returns the energy of the state corresponding to quantum number ``n``.

E=(n**2 * (hcross)**2) / (2 * m * r**2)

Parameters
==========

n :
    The quantum number.
m :
    Mass of the particle.
r :
    Radius of circle.

Examples
========

>>> from sympy.physics.pring import energy
>>> from sympy import Symbol
>>> m=Symbol("m")
>>> r=Symbol("r")
>>> energy(1, m, r)
hbar**2/(2*m*r**2)
>>> energy(2, m, r)
2*hbar**2/(m*r**2)
>>> energy(-2, 2.0, 3.0)
0.111111111111111*hbar**2

References
==========

.. [1] Atkins, Peter W.; Friedman, Ronald (2005). Molecular Quantum
       Mechanics (4th ed.).  Pages 71-73.

r
   z'n' must be integer)r   
is_integerr   
ValueError)r   mrs      r   energyr   5   sR    J dAaD!A$!A||1tQw1q51a4<00.//r   N)sympy.core.numbersr   r   sympy.core.singletonr   &sympy.functions.elementary.exponentialr   (sympy.functions.elementary.miscellaneousr   sympy.physics.quantum.constantsr   r   r    r   r   <module>r      s    & " 6 9 0*)Z)0r   