
    \hی              $       $9   S SK Jr  S SKJr  S SKJr  S SKJr  S SKJ	r	  S SK
JrJr  S SKJrJrJr  S SKJr  S S	KJr  S S
KJrJrJrJrJr  S SKJr  S SKJrJr  S SK J!r!J"r"  S SK#J$r$J%r%  S SK&J'r'J(r(  S SK)J*r*J+r+J,r,J-r-  S SK.J/r/J0r0J1r1J2r2J3r3J4r4  S SK5J6r6  S SK7J8r8  S SK9J:r:J;r;J<r<J=r=J>r>  S SK9J?r?  S SKJ@r@JArAJBrBJCrCJDrDJErE  S SKFJGrGJHrHJIrI  S SKJJKrKJLrLJMrMJNrNJOrOJPrPJQrQJRrRJSrSJTrT  SSKUJVrVJWrWJXrXJYrYJZrZJ[r[J\r\J]r]J^r^J_r_J`r`  \" S5      ra\aSL rbS rcS rd\4S jreS  rfS! rg/ S"\" S#5      4PS$\" S$5      4PS%\" S&5      4PS'\" S'5      4PS(\" S)5      4PS*\" S)5      4PS+\" S,5      4PS-\" S.5      4PS/\" S05      4PS1\" S25      4PS3\" S45      4PS5\" S65      4PS7\" S75      4PS8\" S85      4PS9\" S:5      4PS;\" S<5      4PS=\" S>5      4PS?\" S@5      4PSA\" SB5      4PSC\" SD5      4PSE\" SE5      4PSF\" SF5      4PSG\" SG5      4PSH\" SH5      4PSI\" SJ5      4PSK\" SJ5      4PSL\" SM5      4PSN\" SO5      4PSP\" SQ5      4PSR\" SS5      4PST\" ST5      4PSU\" SU5      4PSV\" SV5      4PSW\" SW5      4PSX\" SM5      4PSY\" SM5      4PSZ\" S[5      4PS\\" S]5      4PS^\" S_5      4PS`\" Sa5      4PSb\" Sc5      4PSd\" Se5      4PSf\" Sg5      4PSh\" Si5      4PSj\" Sk5      4PSl\" Sm5      4PSn\" So5      4PSp\" Sq5      4PSr\" Ss5      4PSt\" Su5      4PSv\" Sw5      4PSx\" Sy5      4PSz\" S{5      4PS|\" S}5      4PS~\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PrhSSSS\Y" SS5      4S\X" SS5      4S\X" S S5      4S\Y" SS5      4S\Y" S S5      4S0\K4SS\K-  4S\X" \Y" S\K5      S5      4S\P* 4S\4S\N\O-  4S\Y" SS5      4S\N\O-  4S\N\O-  4S\N\O-   4S\X" \N\O-   \N* 5      4S\Y" \X" \K\L5      \M5      4S\X" \Y" \" S75      \O5      \Y" \N\" S5      5      5      4/riSSSSSSS\K-  4SS\K-  S-
  4S\P* 4S\N\O-  4SS\N\O-  4S\N\O-  4S\N\O-   4S\O4S\K\L-   \M-  4/rjS\N\O-  4S\N\O-  4S\N\O-  4S\Y" S\Z" SS5      5      4S\Y" \Y" S\Z" SS5      5      \L5      4S\Y" \Y" S\Z" SS5      5      S5      4S\Y" S\Z" SS5      5      4S\Y" \N\O-   \Z" \PS5      5      4GS \Y" GS\Z" SS5      5      4/	rkS\N\O-  4S\N\O-  4S\N\O-  4S\" SS5      4S\LS-  4GSS\" SS5      4S\N\O-   \P-  4GS \" GSS5      4/	rlGS\@" \K\L5      4GS\A" \K\L5      4GS\B" \K\L5      4GS\D" \K\L5      4GS\C" \K\L5      4GS\E" \K\L5      4GS	\C" \K\L5      4GS
\E" \K\L5      4GS\" \K\L5      4GS\" \K\L5      4GS\" \K\L5      4GS\" \K\L5      4GS\" \K\L5      4GS\@" \NS-  \OS-  -   \PS-  5      4/rmGS\KS-  4GS\Z" \K\Y" S\Z" SS5      5      5      4GS\K\X" SS5      -  4GS\" GS5      \]" \K\L-  5      -  4GS\X" \Z" GSS 5      \Y" S\Z" GSS 5      5      5      4/rnGS\KS-  4GS\+" \K5      4GS\KGS-  4GS\" GS5      \]" \K\L-  5      -  4GS/roGS\6" \Y" S\K5      \K5      4GS\6" \Y" S\K5      \K5      4GS\6" \Y" S\K5      \V5      4GS\6" \Y" S\KS-  \L-
  5      \K5      4GS\6" \Y" S\X" \K\N5      5      \K5      4GS\6" \Y" SS5      \N5      4GS\6" \Y" SS5      \KS GS45      4GS\6" \Y" S\K5      \KS S45      4GS\6" \Y" S\K5      \K\N\O45      4GS\6" \Y" S\K5      \K\N\O45      4GS\6" \Y" S\K5      \K\N\O45      4GS \6" \Y" S\K5      \K\N\O45      4GS!\6" \Y" S\K5      \K\N\O45      4GS"\6" \Y" S\K5      \K\N\O45      4GS#\6" \W" \M5      \M\W" \N5      \W" \O5      45      4GS$\6" \Y" S\X" \X" \N\O5      \P5      5      \K5      4GS%\6" \Y" S\Y" S\" \MS5      5      5      \M5      4GS&\6" \Y" S\Y" S\Z" \MS5      5      5      \M5      4GS'\6" \Y" S\Y" S\" \KS5      5      5      \K5      4GS(\6" \Y" S\X" \Y" S\Z" \NS5      5      \Y" S\" \OS5      5      5      5      \K5      4GS)\6" \Y" S\X" \Y" S\Z" \KS5      5      S5      5      \K5      4/rpGS\6" \K\K5      4GS\6" \K\K5      4GS\6" \K\V5      4GS\6" \KS-  \L-
  \K5      4GS\6" \K\N-   \K5      4GS\6" S\N5      4GS\6" S\KS GS45      4GS\6" \K\KS S45      4GS\6" \K\K\N\O45      4GS\6" \K\K\N\O45      4GS\6" \K\K\N\O45      4GS \6" \K\K\N\O45      4GS!\6" \K\K\N\O45      4GS"\6" \K\K\N\O45      4GS#\6" \W" \M5      \M\W" \N5      \W" \O5      45      4GS$\6" \N\O-   \P-   \K5      4GS%\6" \" \MS5      \M5      4GS&\6" S\" \MS5      -  \M5      4GS'\6" S\K-  \K5      4GS(\6" S\N-  S\O-  -   \K5      4GS*\6" S\N-  S\O-  -
  \K5      4GS)\6" S\K-  S-   \K5      4/rqGS+\" \K\K5      4GS,\" \K\R5      4GS-\" \4" \K5      \K5      4GS.\" \W" \K5      \K5      4GS/\" \" GS05      " \K5      \K5      4/rrGS1\3" \V5      4GS2\3" \V5      4GS3\/" \N5      4GS4\Y" \3" \N5      \0" \O5      5      4GS5\3" \0" \V5      5      4GS6\3" \0" \V5      5      4GS7\1" \K5      \2" \L5      -  4GS8\Y" \3" \K5      \Z" SS5      5      4/rsGS9\8" \N\KSGS:GS;94GS<\8" \N\KSGS:GS;94GS=\8" \N\KSGS:GS;94GS>\8" \N\KSGS:GS;94GS?\8" \N\KSGS:GS;94GS@\8" \N\KSGSAGS;94GSB\8" \N\KSGSCGS;94GSD\8" \N\KSGSAGS;94GSE\8" \N\KSGSCGS;94GSF\8" \Y" S\Z" \KS5      5      \K\5      4/
rtGSF\8" S\K-  \K\5      4/ruGSG\+" \K5      4GSH\+" \X" \K\O5      5      4GSI\Z" \3" \K5      \Z" SS5      5      4GSJ\*" \3" \K5      \L5      4GSK\*" \3" \K5      \V5      4GSL\[" \Y" GSM\Z" GSNS5      5      5      4/rvGSG\+" \K5      4GSH\+" \K\O-   5      4GSI\*" \3" \K5      S5      4GSJ\*" \3" \K5      \L5      4GSK\*" \3" \K5      \V5      4GSL\+" S5      4/rwGSO\^" \K5      4GSP\^" GSQ5      4GSR\^" \V5      4GSS\^" \X" \KS5      5      4GST\^" \^" \K5      5      4GSU\^" \^" \^" \K5      5      5      4GSV\Y" \^" GS5      \^" GS5      5      4/rxGSO\" \K5      4GSP\" GSQ5      4GSR\" \V5      4GSS\" \KS-   5      4GST\" \" \K5      5      4GSU\" \" \" \K5      5      5      4GSV\" GS5      \" GS5      -  4GSW\" GSX5      \" GSX5      -  4/ryGSY\	" \Y" S\P5      \SSS45      4GSZ\	" \Y" S\P5      \SSS45      4GS[\	" \Y" S\P5      \SSS45      4GS\\	" \Y" S\P5      \SSS45      4GS]\	" \Y" S\SS-  5      \SSGS^45      4GS_\	" \Y" S\Y" S\Z" \^" \T5      S5      5      5      \TS \45      4/rzGSY\	" \P\SSS45      4GSZ\	" \P\SSS45      4GS[\	" \P\SSS45      4GS\\	" \P\SSS45      4GS]\	" \SS-  \SSGS^45      4GS_\	" S\" \T5      -  \TS \45      4/r{GS`\" \K\N\O\P45      4GSa\" \K\N\O\P45      4GSb\" \K\N\O\P45      4GSc\" \K\N\O\P45      4/r|GSd\W" \K5      4GSe\W" \K\L5      4GSf\W" \K\L\M5      4GSg\" GSh5      " \K5      4GSi\" GSj5      " \K\L-   5      4GSk\" S)5      " \" S#5      \" S$5      5      4/r}GSl\]" \K5      4GSm\]" \!" \K5      5      4GSn\]" \K5      \]" \L5      -  4GSo\]" \]" \K5      \]" \L5      -  5      4GSp\(" \K5      4GSq\'" \K5      4GSr\_" \K5      4GSs\_" \K5      4GSt\e" \KGS^5      4GSu\e" \K5      4GSv\e" \K\L-  5      4GSw\e" \K5      4GSx\e" \K\L-  5      4GSy\e" \KS5      4GSz\e" \K\N5      4GS{\e" \KGS|5      4GS}\e" \K\Z" \NS5      5      4GS~\e" \KS5      4GS\e" \K\N5      4GS\\" \M5      4GS\\" \\" \M5      5      4GS\\" \X" \K\L5      5      4GS\\" \K5      \\" \L5      -   4GS\c" \N\O5      4GS\c" \N\O\P\Q-
  \K\L-  5      4GS\d" \N\O5      4GS\d" \N\O\P\Q-
  \K\L-  5      4GS\G" S05      4GS\H" S05      4GS\I" \G" S05      \H" GS5      5      4/r~GSl\!" \K5      4GSm\!" \!" \K5      5      4GSn\!" \K5      \!" \L5      -  4GSo\!" \!" \K5      \!" \L5      -  5      4GSp\(" \K5      4GSq\'" \K5      4GSr\$" \K5      4GSs\$" \K5      4GSt\%" \KGS^5      4GSu\%" \K5      4GSv\%" \K\L-  5      4GSw\%" \K5      4GSx\%" \K\L-  5      4GSy\%" \KS5      4GSz\%" \K\N5      4GS{\%" \KGS|5      4GS}\%" \K\Z" \NS5      5      4GS~\%" \KS5      4GS\%" \K\N5      4GS\"" \M5      4GS\"" \"" \M5      5      4GS\"" \K\L-   5      4GS\"" \K5      \"" \L5      -   4GS\," \N\O5      4GS\," \N\O\P\Q-
  \K\L-  5      4GS\-" \N\O5      4GS\-" \N\O\P\Q-
  \K\L-  5      4GS\G" S05      4GS\H" S05      4GS\I" \G" S05      \H" GS5      5      4/rGS\Y" \N\O5      4GS\Y" \N\O5      4GS\Y" \N\O5      4GS\Y" \N\O5      4GS\Y" \N\O5      4GS\Y" \N\O5      4GS\Y" \N\O5      4GS\Y" \N\O5      4GS\Y" \N\O5      4GS\Y" \N\O5      4GS\Y" \N\O5      4GS\Y" \N\O5      4/rGS\`" \T\S5      4GS\`" \T\S5      4GS\`" \T\S5      4GS\`" \TS 5      4GS\Z" \K\`" \T\S5      5      4/rGS\" \T\S5      4GS\" \T\S5      4GS\" \T\S5      4GS\" \TS 5      4GS\K\" \T\S5      -  4/rGS\Y" \X" \K\L5      \M5      4GS\Y" \X" \K\L5      \M5      4GS\Y" \X" \K\L5      \M5      4/rGS\Z" \?S5      4GS\]" \?5      4GS\\" \?5      4GS\X" \?\?5      4GS\X" \?\?* 5      4GS\Y" \?\?5      4GS\Y" \?\Z" \?S5      5      4GS\Y" \X" S\?5      \Z" \]" \X" S\?5      5      S5      5      4/rGS\:" \N\O/\K\L//5      4GS\:" \N\O/\K\L//5      4GS\:" \N\O/\K\L//5      4GS\:" \N\O/\K\L//5      4GS\:" \N\O/\K\L//5      4GS\:" \N\O/\K\L//5      4GS\:" \N\O/\K\L//5      4GS\:" \N\O/\K\L//5      4GS\:" \N\O/\K\L//5      4GS\f" \:" \K\L/\N\O//5      \:" \N\O/\K\L//5      5      4GS\g" S\:" \N\O/\K\L//5      5      4GS\f" \:" \K\L/\N\O//5      \g" S\:" \N\O/\K\L//5      5      5      4GS\g" \g" \:" \N\O\P/\K\L\M/\N\O\P//5      \:" \K\L\M/\N\O\P/\N\O\P//5      5      \:" \N\O\P/\K\L\M/\K\L\M//5      5      4GS\g" \:" \N\O/\K\L//5      \Z" SS5      5      4GS\Z" \:" \N\O/\K\L//5      S5      4GS\Z" \:" \N\O/\K\L//5      S5      4GS\=" \:" \N\O/\K\L//5      5      4GS\=" \:" \N\O/\K\L//5      5      4GS\=" \:" \N\O/\K\L//5      5      4GS\=" \:" SS/SGS//5      5      4GS\g" \f" \:" SS/SGS//5      \=" \:" SS/SGS//5      5      5      \:" S/S //5      5      4GS\Z" \f" \:" \N\O/\K\L//5      \:" \K\L/\N\O//5      5      S5      4GS\=" \f" \:" \N\O/\K\L//5      \:" \K\L/\N\O//5      5      5      4GS\\" \f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      5      4/r/ GS\:" \N\O/\K\L//5      GR                  5       4PGSPGSPGSPGSPGS\g" \:" \N\O/\K\L//5      \Z" \:" \N\O/\K\L//5      GR                  5       S5      5      4PGS\g" \:" \N\O/\K\L//5      \Z" \:" \N\O/\K\L//5      GR                  5       S5      5      4PGS\g" \:" \N\O/\K\L//5      \Z" \:" \N\O/\K\L//5      GR                  5       S5      5      4PGS\:" \?* S\?-
  /\?GS//5      4PGS\:" \?* \?/S\?-
  GS//5      4PGS\>" \:" \?S\?-   /\?* GS//5      5      4PGS\:" GSGS/GSS//5      4PGS\:" GS\?-  GSN/GSGS//5      4PGS\:" GS\?-  GSN/GSGS//5      4PGS\:" S\?-  GS/GSNGS//5      4PGS\:" GS\?-  GSN/GSGS//5      4PGS\:" GS\?-  GSN/GSGS//5      4PGS\:" S\?-  GS/GSNGS//5      4PGS\:" GS\?-  GSN/GSGS//5      4PGS\=" \f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      5      4PGS\=" \f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      5      4PGS\f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      4PGS\=" \f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      5      4PGS\=" \f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      5      4PGS\f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      4PGS\=" \f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      5      4PGS\=" \f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      5      4PGS\f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      4PGS\=" \f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      5      4PGS\f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      GR                  5       4PGS\>" \f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      5      4PGS\:" GSGS/GSS\?-  //5      4PGS\=" \f" \:" \?S/SGS//5      \:" \?S/SGS//5      5      5      4PGS\:" GS\?-  GSN/GSGS//5      4PrGS rGS rGS rGS rGS rGS rGS rGS rGS rGS rGS rGS rGS r\GS 5       rGS r\GS 5       rGS rGS rGS rGS rg(      )XFAIL)parse_latex_lark)import_module)Product)Sum)
DerivativeFunction)EooRational)Powevaluate)GreaterThanLessThanStrictGreaterThanStrictLessThan
Unequality)Symbol)binomial	factorial)Abs	conjugate)explog)ceilingfloor)rootsqrtMinMax)asincoscscsecsintan)Integral)Limit)MatrixMatAddMatMul	TransposeTrace)I)EqNeLtLeGtGe)BraKetInnerProduct)
xyzabcdtkn   )thetaf_Add_Mul_Pow_Sqrt
_Conjugate_Abs
_factorial_exp	_binomiallarkNc                      [        U SS06$ Nr   F)r    argss    [/var/www/auris/envauris/lib/python3.13/site-packages/sympy/parsing/tests/test_latex_lark.py_MinrU   $       %u%%    c                      [        U SS06$ rQ   )r!   rR   s    rT   _MaxrY   (   rV   rW   c                 >    U[         :X  a
  [        U SS9$ [        XSS9$ NFr   )r
   r   r<   r=   s     rT   _logr]   ,   s#    Av1u%%1%((rW   c                     [        XSS9$ r[   )r+   r\   s     rT   _MatAddr_   3       !''rW   c                     [        XSS9$ r[   )r,   r\   s     rT   _MatMulrb   7   r`   rW   x_0zx_{0}zx_{1}x_azx_{a}zx_{b}zh_\thetaz	h_{theta}z
h_{\theta}zy''_1zy''_{1}zy_1''zy_{1}''z
\mathit{x}r9   z\mathit{test}testz\mathit{TEST}TESTz\mathit{HELLO world}zHELLO worldza'za''z\alpha'zalpha'z\alpha''zalpha''a_bza_{b}za_b'za_{b}'za'_bza'_{b}za'_b'za'_{b}'za_{b'}za_{b'}'za'_{b'}za'_{b'}'z\mathit{foo}'zfoo'z\mathit{foo'}z\mathit{foo'}'zfoo''za_b''za_{b}''za''_bza''_{b}za''_b'''z
a''_{b}'''za_{b''}z	a_{b''}''z	a''_{b''}za''_{b''}'''z\mathit{foo}''z\mathit{foo''}z\mathit{foo''}'''zfoo'''''za_\alphaz	a_{alpha}z	a_\alpha'z
a_{alpha}'z	a'_\alphaz
a'_{alpha}z
a'_\alpha'za'_{alpha}'za_{\alpha'}z
a_{alpha'}za_{\alpha'}'za_{alpha'}'za'_{\alpha'}za'_{alpha'}za'_{\alpha'}'za'_{alpha'}'z
a_\alpha''za_{alpha}''z
a''_\alphaza''_{alpha}za''_\alpha'''za''_{alpha}'''za_{\alpha''}za_{alpha''}za_{\alpha''}''za_{alpha''}''za''_{\alpha''}za''_{alpha''}za''_{\alpha''}'''za''_{alpha''}'''z\alpha_bz	alpha_{b}z	\alpha_b'z
alpha_{b}'z	\alpha'_bz
alpha'_{b}z
\alpha'_b'zalpha'_{b}'z\alpha_{b'}z
alpha_{b'}z\alpha_{b'}'zalpha_{b'}'z\alpha'_{b'}zalpha'_{b'}z\alpha'_{b'}'zalpha'_{b'}'z
\alpha_b''zalpha_{b}''z
\alpha''_bzalpha''_{b}z\alpha''_b'''zalpha''_{b}'''z\alpha_{b''}zalpha_{b''}z\alpha_{b''}''zalpha_{b''}''z\alpha''_{b''}zalpha''_{b''}z\alpha''_{b''}'''zalpha''_{b''}'''z\alpha_\betazalpha_{beta}z\alpha_{\beta}z\alpha_{\beta'}zalpha_{beta'}z\alpha_{\beta''}zalpha_{beta''}z\alpha'_\betazalpha'_{beta}z\alpha'_{\beta}z\alpha'_{\beta'}zalpha'_{beta'}z\alpha'_{\beta''}zalpha'_{beta''}z\alpha''_\betazalpha''_{beta}z\alpha''_{\beta}z\alpha''_{\beta'}zalpha''_{beta'}z\alpha''_{\beta''}zalpha''_{beta''}z\alpha_\beta'zalpha_{beta}'z\alpha_{\beta}'z\alpha_{\beta'}'zalpha_{beta'}'z\alpha_{\beta''}'zalpha_{beta''}'z\alpha'_\beta'zalpha'_{beta}'z\alpha'_{\beta}'z\alpha'_{\beta'}'zalpha'_{beta'}'z\alpha'_{\beta''}'zalpha'_{beta''}'z\alpha''_\beta'zalpha''_{beta}'z\alpha''_{\beta}'z\alpha''_{\beta'}'zalpha''_{beta'}'z\alpha''_{\beta''}'zalpha''_{beta''}'z\alpha_\beta''zalpha_{beta}''z\alpha_{\beta}''z\alpha_{\beta'}''zalpha_{beta'}''z\alpha_{\beta''}''zalpha_{beta''}''z\alpha'_\beta''zalpha'_{beta}''z\alpha'_{\beta}''z\alpha'_{\beta'}''zalpha'_{beta'}''z\alpha'_{\beta''}''zalpha'_{beta''}''z\alpha''_\beta''zalpha''_{beta}''z\alpha''_{\beta}''z\alpha''_{\beta'}''zalpha''_{beta'}''z\alpha''_{\beta''}''zalpha''_{beta''}'')0r   )1rC   )z-3.14gQ	(-7.13)(1.5)gQg      ?1+10+11*2   0*12xz3x - 1   z-cz\inftyz	a \cdot b1 \times 2 za / bza \div bza + bz	a + b - az	(x + y) zza'b+ab'zb')rj   gp=
c%)rk   rn   )rl   rC   )rm   rn   )ro   r   )rs   rn   z\frac{a}{b}z\dfrac{a}{b}z\tfrac{a}{b}z\frac12z\frac12y	\frac1234"   z	\frac2{3}z\frac{a + b}{c}z\frac{7}{3}   )rt      zx = yzx \neq yzx < yzx > yzx \leq yzx \geq yzx \le yzx \ge yza^2 + b^2 = c^2zx^2zx^\frac{1}{2}z	x^{3 + 1}z
\pi^{|xy|}pi	5^0 - 4^0      )ry   r   z	\int x dxz\int x \, dxz\int x d\thetaz\int (x^2 - y)dxz\int x + a dxz\int daz\int_0^7 dxz\int\limits_{0}^{1} x dxz\int_a^b x dxz\int^b_a x dxz\int_{a}^b x dxz\int^{b}_a x dxz\int_{a}^{b} x dxz\int^{b}_{a} x dxz\int_{f(a)}^{f(b)} f(z) dzz\int a + b + c dxz\int \frac{dz}{z}z\int \frac{3 dz}{z}z\int \frac{1}{x} dxz!\int \frac{1}{a} + \frac{1}{b} dxz\int \frac{1}{x} + 1 dxz!\int \frac{1}{a} - \frac{1}{b} dxz\frac{d}{dx} xz\frac{d}{dt} xz\frac{d}{dx} ( \tan x )z\frac{d f(x)}{dx}z\frac{d\theta(x)}{dx}rD   z\sin \thetaz\sin(\theta)z\sin^{-1} az\sin a \cos bz\sin \cos \thetaz\sin(\cos \theta)z(\csc x)(\sec y)z\frac{\sin{x}}2z\lim_{x \to 3} az+-)dirz\lim_{x \rightarrow 3} az\lim_{x \Rightarrow 3} az\lim_{x \longrightarrow 3} az\lim_{x \Longrightarrow 3} az\lim_{x \to 3^{+}} a+z\lim_{x \to 3^{-}} a-z\lim_{x \to 3^+} az\lim_{x \to 3^-} az\lim_{x \to \infty} \frac{1}{x}z\sqrt{x}z\sqrt{x + b}z\sqrt[3]{\sin x}z\sqrt[y]{\sin x}z\sqrt[\theta]{\sin x}z\sqrt{\frac{12}{6}}      zx!z100!d   z\theta!z(x + 1)!z(x!)!zx!!!z5!7!z24! \times 24!   z\sum_{k = 1}^{3} cz\sum_{k = 1}^3 cz\sum^{3}_{k = 1} cz\sum^3_{k = 1} cz\sum_{k = 1}^{10} k^2
   z"\sum_{n = 0}^{\infty} \frac{1}{n!}z\prod_{a = b}^{c} xz\prod_{a = b}^c xz\prod^{c}_{a = b} xz\prod^c_{a = b} xzf(x)zf(x, y)z
f(x, y, z)zf'_1(x)zf_{1}'zf_{1}''(x+y)zf_{1}''zh_{\theta}(x_0, x_1)z|x|z||x||z|x||y|z||x||y||z\lfloor x \rfloorz\lceil x \rceilz\exp xz\exp(x)z\lg xz\ln xz\ln xyz\log xz\log xyz
\log_{2} xz
\log_{a} xz\log_{11} x   z\log_{a^2} xz\log_2 xz\log_a xz\overline{z}z\overline{\overline{z}}z\overline{x + y}z\overline{x} + \overline{y}z
\min(a, b)z\min(a, b, c - d, xy)z
\max(a, b)z\max(a, b, c - d, xy)z\langle x |z| x \ranglez\langle x | y \rangler:   za \, bza \thinspace bza \: bza \medspace bza \; bza \thickspace bz	a \quad bz
a \qquad bza \! bza \negthinspace bza \negmedspace bza \negthickspace bz\binom{n}{k}z\tbinom{n}{k}z\dbinom{n}{k}z\binom{n}{0}zx^\binom{n}{k}z\left(x + y\right) zz\left( x + y\right ) zz\left(  x + y\right ) zz\imaginaryunit^2z|\imaginaryunit|z\overline{\imaginaryunit}z\imaginaryunit+\imaginaryunitz\imaginaryunit-\imaginaryunitz\imaginaryunit*\imaginaryunitz\imaginaryunit/\imaginaryunitz%(1+\imaginaryunit)/|1+\imaginaryunit|z)\begin{pmatrix}a & b \\x & y\end{pmatrix}z+\begin{pmatrix}a & b \\x & y\\\end{pmatrix}z)\begin{bmatrix}a & b \\x & y\end{bmatrix}z4\left(\begin{matrix}a & b \\x & y\end{matrix}\right)z4\left[\begin{matrix}a & b \\x & y\end{matrix}\right]z6\left[\begin{array}{cc}a & b \\x & y\end{array}\right]z6\left(\begin{array}{cc}a & b \\x & y\end{array}\right)z<\left( { \begin{array}{cc}a & b \\x & y\end{array} } \right)z*+\begin{pmatrix}a & b \\x & y\end{pmatrix}zS\begin{pmatrix}x & y \\a & b\end{pmatrix}+\begin{pmatrix}a & b \\x & y\end{pmatrix}z*-\begin{pmatrix}a & b \\x & y\end{pmatrix}zS\begin{pmatrix}x & y \\a & b\end{pmatrix}-\begin{pmatrix}a & b \\x & y\end{pmatrix}z\begin{pmatrix}a & b & c \\x & y & z \\a & b & c \end{pmatrix}*\begin{pmatrix}x & y & z \\a & b & c \\a & b & c \end{pmatrix}*\begin{pmatrix}a & b & c \\x & y & z \\x & y & z \end{pmatrix}z+\begin{pmatrix}a & b \\x & y\end{pmatrix}/2z+\begin{pmatrix}a & b \\x & y\end{pmatrix}^2z.\begin{pmatrix}a & b \\x & y\end{pmatrix}^{-1}z+\begin{pmatrix}a & b \\x & y\end{pmatrix}^Tz-\begin{pmatrix}a & b \\x & y\end{pmatrix}^{T}z4\begin{pmatrix}a & b \\x & y\end{pmatrix}^\mathit{T}z+\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}^Tzx(\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}+\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix}^T)*\begin{bmatrix}1\\0\end{bmatrix}zW(\begin{pmatrix}a & b \\x & y\end{pmatrix}+\begin{pmatrix}x & y \\a & b\end{pmatrix})^2zW(\begin{pmatrix}a & b \\x & y\end{pmatrix}+\begin{pmatrix}x & y \\a & b\end{pmatrix})^Tzn\overline{\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}}zJ\det\left(\left[   { \begin{array}{cc}a&b\\x&y\end{array} } \right]\right))z)\det \begin{pmatrix}1&2\\3&4\end{pmatrix})z*\det{\begin{pmatrix}1&2\\3&4\end{pmatrix}}r   )z*\det(\begin{pmatrix}1&2\\3&4\end{pmatrix})r   )z5\det\left(\begin{pmatrix}1&2\\3&4\end{pmatrix}\right)r   zS\begin{pmatrix}a & b \\x & y\end{pmatrix}/\begin{vmatrix}a & b \\x & y\end{vmatrix}zS\begin{pmatrix}a & b \\x & y\end{pmatrix}/|\begin{matrix}a & b \\x & y\end{matrix}|za\frac{\begin{pmatrix}a & b \\x & y\end{pmatrix}}{| { \begin{matrix}a & b \\x & y\end{matrix} } |}z^\overline{\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix}}zU\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix}^Hz[\trace(\begin{pmatrix}\imaginaryunit & 1+\imaginaryunit \\-\imaginaryunit & 4\end{pmatrix})z4\adjugate(\begin{pmatrix}1 & 2 \\3 & 4\end{pmatrix})r   zj(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^\ast   zl(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast}zp(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast\ast}zt(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\ast\ast\ast}zi(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{*}zj(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{**}zk(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{***}zl(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^\primezn(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime}zt(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime\prime}zz(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{\prime\prime\prime}zi(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{'}zj(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{''}zk(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^{'''}zf(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})'zg(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})''zh(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})'''zi\det(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})zk\trace(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})zn\adjugate(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})izg(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^Tzg(\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix}+\begin{pmatrix}\imaginaryunit&2\\3&4\end{pmatrix})^Hc                      SS1n [        [        5       H:  u  nu  p#X;   a  M  [        S5         [        U5      U:X  d   U5       e S S S 5        M<     g ! , (       d  f       MN  = f)Nr   rv   F)	enumerateSYMBOL_EXPRESSION_PAIRSr   r   expected_failuresi	latex_str
sympy_exprs       rT   test_symbol_expressionsr     s\    A&/0G&H""I!e_#I.*<GiG< _ 'I _   A
A"	c                  8   S1n [        [        5       H:  u  nu  p#X;   a  M  [        S5         [        U5      U:X  d   U5       e S S S 5        M<     [        [        5       H%  u  nu  p#X;   a  M  [        U5      U:X  a  M    U5       e   g ! , (       d  f       M  = f)N   F)r   #UNEVALUATED_SIMPLE_EXPRESSION_PAIRSr   r   !EVALUATED_SIMPLE_EXPRESSION_PAIRSr   s       rT   test_simple_expressionsr     s    &/0S&T""I!e_#I.*<GiG< _ 'U '00Q&R""I!	*j8C)C8 'S _   B


B	c                      [          H0  u  p[        S5         [        U 5      U:X  d   U 5       e S S S 5        M2     [         H  u  p[        U 5      U:X  a  M   U 5       e   g ! , (       d  f       Mi  = fNF)%UNEVALUATED_FRACTION_EXPRESSION_PAIRSr   r   #EVALUATED_FRACTION_EXPRESSION_PAIRSr   r   s     rT   test_fraction_expressionsr     g    !F	e_#I.*<GiG< _ "G "E		*j8C)C8 "E _   A!!
A0	c                      [          H0  u  p[        S5         [        U 5      U:X  d   U 5       e S S S 5        M2     g ! , (       d  f       MD  = fr   )RELATION_EXPRESSION_PAIRSr   r   r   s     rT   test_relation_expressionsr     s;    !:	e_#I.*<GiG< _ ";_	   <
A	c                  8   S1n [        [        5       H:  u  nu  p#X;   a  M  [        S5         [        U5      U:X  d   U5       e S S S 5        M<     [        [        5       H%  u  nu  p#X;   a  M  [        U5      U:X  a  M    U5       e   g ! , (       d  f       M  = fNrq   F)r   "UNEVALUATED_POWER_EXPRESSION_PAIRSr   r    EVALUATED_POWER_EXPRESSION_PAIRSr   s       rT   test_power_expressionsr     s    &/0R&S""I!e_#I.*<GiG< _ 'T '00P&Q""I!	*j8C)C8 'R _r   c                  8   S1n [        [        5       H:  u  nu  p#X;   a  M  [        S5         [        U5      U:X  d   U5       e S S S 5        M<     [        [        5       H%  u  nu  p#X;   a  M  [        U5      U:X  a  M    U5       e   g ! , (       d  f       M  = f)N   F)r   %UNEVALUATED_INTEGRAL_EXPRESSION_PAIRSr   r   #EVALUATED_INTEGRAL_EXPRESSION_PAIRSr   s       rT   test_integral_expressionsr     s    &/0U&V""I!e_#I.*<?a?< _ 'W '00S&T""I!	*j8C)C8 'U _r   c                  :   SS1n [        [        5       H:  u  nu  p#X;   a  M  [        S5         [        U5      U:X  d   U5       e S S S 5        M<     [        [        5       H%  u  nu  p#X;   a  M  [        U5      U:X  a  M    U5       e   g ! , (       d  f       M  = f)Nrq   r{   F)r   DERIVATIVE_EXPRESSION_PAIRSr   r   r   s       rT   test_derivative_expressionsr     s    A&/0K&L""I!e_#I.*<GiG< _ 'M '00K&L""I!	*j8C)C8 'M _s   B
B	c                      S1n [        [        5       H:  u  nu  p#X;   a  M  [        S5         [        U5      U:X  d   U5       e S S S 5        M<     g ! , (       d  f       MN  = fr   )r   TRIGONOMETRIC_EXPRESSION_PAIRSr   r   r   s       rT   test_trigonometric_expressionsr     sZ    &/0N&O""I!e_#I.*<GiG< _ 'P _s   A
A!	c                      [          H0  u  p[        S5         [        U 5      U:X  d   U 5       e S S S 5        M2     g ! , (       d  f       MD  = fr   )"UNEVALUATED_LIMIT_EXPRESSION_PAIRSr   r   r   s     rT   test_limit_expressionsr     s<    !C	e_#I.*<GiG< _ "D_r   c                      [          H0  u  p[        S5         [        U 5      U:X  d   U 5       e S S S 5        M2     [         H  u  p[        U 5      U:X  a  M   U 5       e   g ! , (       d  f       Mi  = fr   )!UNEVALUATED_SQRT_EXPRESSION_PAIRSr   r   EVALUATED_SQRT_EXPRESSION_PAIRSr   s     rT   test_square_root_expressionsr     sg    !B	e_#I.*<GiG< _ "C "A		*j8C)C8 "A _r   c                      [          H0  u  p[        S5         [        U 5      U:X  d   U 5       e S S S 5        M2     [         H  u  p[        U 5      U:X  a  M   U 5       e   g ! , (       d  f       Mi  = fr   )&UNEVALUATED_FACTORIAL_EXPRESSION_PAIRSr   r   $EVALUATED_FACTORIAL_EXPRESSION_PAIRSr   s     rT   test_factorial_expressionsr     sg    !G	e_#I.*<GiG< _ "H "F		*j8C)C8 "F _r   c                      [          H0  u  p[        S5         [        U 5      U:X  d   U 5       e S S S 5        M2     [         H  u  p[        U 5      U:X  a  M   U 5       e   g ! , (       d  f       Mi  = fr   ) UNEVALUATED_SUM_EXPRESSION_PAIRSr   r   EVALUATED_SUM_EXPRESSION_PAIRSr   s     rT   test_sum_expressionsr   #  sg    !A	e_#I.*<GiG< _ "B "@		*j8C)C8 "@ _r   c                      [          H0  u  p[        S5         [        U 5      U:X  d   U 5       e S S S 5        M2     g ! , (       d  f       MD  = fr   )$UNEVALUATED_PRODUCT_EXPRESSION_PAIRSr   r   r   s     rT   test_product_expressionsr   ,  s<    !E	e_#I.*<GiG< _ "F_r   c                      1 Skn [        [        5       H:  u  nu  p#X;   a  M  [        S5         [        U5      U:X  d   U5       e S S S 5        M<     g ! , (       d  f       MN  = f)N>   r   rq   r{   F)r   !APPLIED_FUNCTION_EXPRESSION_PAIRSr   r   r   s       rT   !test_applied_function_expressionsr   1  sX    !&/0Q&R""I!e_#I.*<GiG< _ 'S _r   c                      [          H0  u  p[        S5         [        U 5      U:X  d   U 5       e S S S 5        M2     [         H  u  p[        U 5      U:X  a  M   U 5       e   g ! , (       d  f       Mi  = fr   ),UNEVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRSr   r   *EVALUATED_COMMON_FUNCTION_EXPRESSION_PAIRSr   s     rT    test_common_function_expressionsr   <  sg    !M	e_#I.*<GiG< _ "N "L		*j8C)C8 "L _r   c                      [          H0  u  p[        S5         [        U 5      U:X  d   U 5       e S S S 5        M2     g ! , (       d  f       MD  = fr   ) SPACING_RELATED_EXPRESSION_PAIRSr   r   r   s     rT   test_spacingr   F  s<    !A	e_#I.*<GiG< _ "B_r   c                      [          H0  u  p[        S5         [        U 5      U:X  d   U 5       e S S S 5        M2     [         H  u  p[        U 5      U:X  a  M   U 5       e   g ! , (       d  f       Mi  = fr   )%UNEVALUATED_BINOMIAL_EXPRESSION_PAIRSr   r   #EVALUATED_BINOMIAL_EXPRESSION_PAIRSr   s     rT   test_binomial_expressionsr   M  r   r   c                      [          H0  u  p[        S5         [        U 5      U:X  d   U 5       e S S S 5        M2     g ! , (       d  f       MD  = fr   )MISCELLANEOUS_EXPRESSION_PAIRSr   r   r   s     rT   test_miscellaneous_expressionsr   V  s<    !?	e_#I.*<GiG< _ "@_r   c                      [          H0  u  p[        S5         [        U 5      U:X  d   U 5       e S S S 5        M2     g ! , (       d  f       MD  = fr   )3UNEVALUATED_LITERAL_COMPLEX_NUMBER_EXPRESSION_PAIRSr   r   r   s     rT   'test_literal_complex_number_expressionsr   \  s<    !T	e_#I.*<GiG< _ "U_r   c                      [          H0  u  p[        S5         [        U 5      U:X  d   U 5       e S S S 5        M2     [         H  u  p[        U 5      U:X  a  M   U 5       e   g ! , (       d  f       Mi  = fr   )#UNEVALUATED_MATRIX_EXPRESSION_PAIRSr   r   !EVALUATED_MATRIX_EXPRESSION_PAIRSr   s     rT   test_matrix_expressionsr   b  sg    !D	e_#I.*<GiG< _ "E "C		*j8C)C8 "C _r   )sympy.testing.pytestr   sympy.parsing.latex.larkr   sympy.externalr   sympy.concrete.productsr   sympy.concrete.summationsr   sympy.core.functionr   r	   sympy.core.numbersr
   r   r   sympy.core.powerr   sympy.core.parametersr   sympy.core.relationalr   r   r   r   r   sympy.core.symbolr   (sympy.functions.combinatorial.factorialsr   r   $sympy.functions.elementary.complexesr   r   &sympy.functions.elementary.exponentialr   r   #sympy.functions.elementary.integersr   r   (sympy.functions.elementary.miscellaneousr   r   r    r!   (sympy.functions.elementary.trigonometricr"   r#   r$   r%   r&   r'   sympy.integrals.integralsr(   sympy.series.limitsr)   sympyr*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   sympy.physics.quantumr6   r7   r8   	sympy.abcr9   r:   r;   r<   r=   r>   r?   r@   rA   rB   
test_latexrD   rE   rF   rG   rH   rI   rJ   rK   rL   rM   rN   rO   disabledrU   rY   r]   r_   rb   r   r   r   r   r   r   r   r   r   r   r   r   r    EVALUATED_LIMIT_EXPRESSION_PAIRSr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   detr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r    rW   rT   <module>r      s*   & 5 ( + ) 4 . .   * f f $ H ? ; > I I R R . % : :  8 8 8 8 2 2 2 h h h hV 4<&&  )((
iVG_ivgi VG_i vg	i
 &%&i F;'(i vi !i vi !i F3K i vf~&i vf~&i f]34i F4Li VE]i !"i  &#$!i" VG_#i$ fX%i& fX'i( vi !)i* x !+i, 	"#-i. 	"#/i0 &$%1i2 vf~&3i4 vf~&5i6 w(7i8 vi !9i: vi !;i< &&'=i> 	"#?i@ 6+&'AiB 6+&'CiD f^,-EiF w(GiH w(IiJ 6*-.KiL &%&MiN 6,'(OiP 6,'(QiR F=)*SiT VL)*UiV f]+,WiX f]+,YiZ vn-.[i\ F=)*]i^ F=)*_i` v./0aib f]+,cid /0eif /0gih 6"456iij &%&kil 6,'(min 6,'(oip F=)*qir VL)*sit f]+,uiv f]+,wix vn-.yiz F=)*{i| F=)*}i~ v./0i@ f]+,AiB /0CiD /0EiF 6"456GiH f^,-IiJ ~./KiL 01MiN &!123OiP vo./QiR 01SiT &!123UiV 6"345WiX /01YiZ &!123[i\ 6"345]i^ F#567_i` vo./aib 01cid &!123eif 6"345gih /01iij &!123kil 6"345min F#567oip  123qir 6"345sit F#567uiv V$789wix /01yiz &!123{i| 6"345}i~ F#567i@  123AiB 6"345CiD F#567EiF V$789GiH &!345IiJ F#567KiL V$789MiN f%9:;Oi X d5#&'T!QZT!QZT!QZT!QZ	1I
AENT!QZ$%
QBKO1q5T!QZ q1u!a%q1u4Ar?#4Q
A&'d6$<+T!VD\-BCD+' #2 
AENA	
QBK1q5q1u!a%q1u1AEQ;% !& QUa!ea!eaa%&$tAtAr{+Q/04QQ,b12442;'(a!eT!R[12T!T!R[)*
) % QUa!ea!e!Q !a%8Aq>"!a%1%Xa^$
' # r!Qx"Q(r!Qxr!Qx"Q("Q(AqAq~a#$(1a.! A&'+a#$*Q"#AqD1a4KA./ $ Q!VtAtAtAr{3451Q
?#F4LDQK/04Q
DT!QZ$89:& " Q!VtAw16F4LDQK/0$   8DAJ*+htAqz1-.aU34(416A:#6:;xQQ
 3Q78$q!*a()Xd1aj1a)45 (41:1ay"ABxQ
Q1I67xQ
Q1I67$q!*q!Qi89$q!*q!Qi898DAJAq	:;8DAJAq	:;"HQqTAqtQqT?$CD8DDaQ,?$@!DE8DDC2J,?$@!DEXd1d1d1bk.B&CQGHXd1d1c!Rj.A&BAFG)d1d442;/aQ1DEFJL$q$tAtAr{7KQ2O*PRS!TU-) %4 8Aq>"hq!n%E*+(16A:q12xAq)*!Q Xa!Q+, (1q!Qi"89xAq!9-.xAq!9-.!aAY/0!aAY/08A1ay128A1ay12"HQqTAqtQqT?$CD8AEAIq128C2J23Xa#a*na89Xa!eQ/0)8AEAEM1+EF)8AEAEM1+EF!a%!)Q!78-' #4 
1a()
1a()CFA!67:adA./z(7*;A*>BC  SZ c%j!T!WtCFCF+,#c%j/*3s5z?+#a&3q6/*c!fd1bk23	"  %1aT23 %1aT":; %1aT":;$eAq!&>?$eAq!&>?eAq!56eAq!56E!Qs34E!Qs34'tAtAr{/CQ)KL& " (q1ua)<=$  
 $q'd41:&'$s1vtAr{34 $s1vq/*tCFE23U4DBK#89:	% ! $q'd1q5k"$s1vq/*$s1vq/*tCFE23T!W%#  JqMjoE"#*T!QZ()z*Q-()jJqM234d:a=*Q-01* & IaLin5!")AE"#y1&'i	)A,/01ilYq\)*	"	"56	( $ CQ
Q1I67#d1aj1a)45CQ
Q1I67#d1aj1a)45s416?Q2J?@*aajmR01	2Q2J?A$   CAq!9-.#a!Q+,CAq!9-.#a!Q+,s16Aq":67*CIaL0@1a*,MN"  WQAq	2371q!Qi01WQAq	2371q!Qi01	( $ adO1aAaAJ(#A&'hy)!a%01k6'?F7O<>% ! T!WtCF|Q$q'!"$tAwa()*58$$QatAr{tAwQUQa!eDAJDAJT!R[!d1d1aj)*$q!*$q!*jm$JqM!:;*T!QZ01#Z]Z]%BCDAJtAq!a%Q78DAJtAq!a%Q78SXSX|CHc#h?@? 0 ,F SVs3q6{AQ #c!fs1vo&'58$$AQs1bzs1vAE
AQUC1IC1ISBZ c!T!QZ()#a)#a)il#9Q<!89)AE*+#Yq\IaL%@AC1Is1aQA67C1Is1aQA67SXSX|CHc#h?@=. *D Q
Q
#Q
tAqz"Q
a$41:DAJQ
41:&$q!*%DAJ'$    i1o&yA'yA'i1o&Q	!Q01) % hq!n%x1~&x1~&hq!n%Xa^+,' # d41:q12T!QZ 34d1aj!!45"  $q!*%$q'"!:a=1%tAqz2%tAr{3%tAqz2%tAtAr{';<-tDAJT$qRS*EUWY@Z/[\	7 3 2aVaV3aVaV1aVaV<aVaV<aVaV>aVaV>aVaVDaVaV2aVaV3VaVaV$%v1v1v.>'?@B 3R!Q!Q()*,3VaVaV$%wr6Aq6Aq6:J3K'LMOH WVaAYAq	Aq!9=>aAYAq	Aq!9=>@aAYAq	Aq!95689 4VaVaV$%tAr{353	&1a&1a&!
"A&(6	&1a&1a&!
"B')3v1v1v&'(*5v1v1v&'(*<v1v1v&'(*3v1v1v&'(** WVaVaV,-v1v1v&678:aSz"$%6!Q!Q()!Q!Q()
+,-/06gfq!fq!f-.q!fq!f-.0 12 wAA/0AA/02 34{@' #DN%RaVaV!!#%N% 7N% 8	N%
 8N% CN% \VaVaV$%tFQFQF3C,D,H,H,JB'OPRN% \VaVaV$%tFQFQF3C,D,H,H,JB'OPRN% jVaVaV$%tFQFQF3C,D,H,H,JB'OPRN% gqb!A#YA "N% ^qb!WqsAh "N%" d
6Aqs8qb!W%&')#N%& =aWr1g!'N%* sbdAYA "+N%. ubdAYA "/N%2 yac1X1v!3N%6 }bdAYA "7N%: rbdAYA ";N%> sac1X1v!?N%B tbdAYA "CN%F uwv1v1v./1v1v./1 23GN%L wwv1v1v./1v1v./1 23MN%R }VaVaV$%aVaV$%'(SN%X Cwv1v1v./1v1v./1 23YN%^ rwv1v1v./1v1v./1 23_N%d sVaVaV$%aVaV$%'(eN%j twv1v1v./1v1v./1 23kN%p owv1v1v./1v1v./1 23qN%v pVaVaV$%aVaV$%'(wN%| qwv1v1v./1v1v./1 23}N%B rfq!fq!f%&q!fq!f%&(),0CN%H t
76Aq6Aq6*+Aq6Aq6*+- ./IN%N wq"gAaCy!"%ON%R pwv1v1v./1v1v./1 23SN%X pr!tQi!Q !$YN% !bHDDH
DDDHHDDDH
 H HD H HDHHDrW   