
    \h-                        S SK JrJr  S SKJr  S SKJr  S SKJr  S SK	J
r
  S SKJrJr  S SKJr  S SKJrJr  S S	KJr  S S
KJrJrJrJrJr  S SKJr  S SKJrJr  S SK J!r!J"r"  S SK#J$r$J%r%  S SK&J'r'J(r(  S SK)J*r*J+r+  S SK,J-r-J.r.J/r/J0r0J1r1J2r2  S SK3J4r4  S SK5J6r6  S SKJ7r7J8r8J9r9J:r:J;r;J<r<  S SK=J>r>J?r?  S SK@JArAJBrBJCrCJDrDJErEJFrFJGrGJHrHJIrI  \" S5      rJ\JSL rK\" S5      rL\" S5      rMS rNS rOS rPS rQS rRS  rSS! rTS" rUS# rVS$ rWS% rX/ S&PS'PS(PS)\O" S*S+5      4PS,\A4PS-S.\A-  4PS/\AS.-  4PS0\P" \A\P" S.S15      5      4PS2\A\N" S3S45      -  4PS5\F* 4PS6\D\E-  4PS7\D\E-  4PS8\D\E-  4PS9\D\E-   4PS:\N" \D\E-   \D* 5      4PS;\7" \DS.-  \ES.-  -   \FS.-  5      4PS<\O" \N" \A\B5      \C5      4PS=\N" \O" \" S>5      \E5      \O" \D\" S?5      5      5      4PS@\" SA5      4PSB\" SA5      4PSC\O" \N" \A\B5      \C5      4PSD\O" \N" \A\B5      \C5      4PSE\O" \N" \A\B5      \C5      4PSF\O" \N" \A\B5      \C5      4PSG\O" \N" \A\B5      \C5      4PSH\N" S4S45      4PSI\N" S S45      4PSJ\O" S4S.5      4PSK\O" S S45      4PSL\O" S4S.5      4PSM\7" \A\B5      4PSN\8" \A\B5      4PSO\9" \A\B5      4PSP\;" \A\B5      4PSQ\:" \A\B5      4PSR\<" \A\B5      4PSS\:" \A\B5      4PST\<" \A\B5      4PSU\(" \A5      4PSV\'" \A5      4PSW\>" S,5      4PSX\?" S,5      4PSY\1" \L5      4PSZ\1" \L5      4PS[\-" \D5      4PS\\O" \1" \D5      \." \E5      5      4PS]\1" \." \L5      5      4PS^\1" \." \L5      5      4PS_\D\E-  4PS`\D\E-  4PSa\D\E-  4PSb\P" S.S15      4PSc\O" \P" S.S15      \B5      4PSd\O" \P" S.S15      Se5      4PSf\O" S.\P" S3S15      5      4PSg\O" \1" \A5      \P" S.S15      5      4PSh\O" \D\E-   \P" \FS15      5      4PSi\O" Sj\P" S3S15      5      4PSk\/" \A5      \0" \B5      -  4PSl\6" \D\AS3SmSn94PSo\6" \D\AS3SmSn94PSp\6" \D\AS3SmSn94PSq\6" \D\AS3SmSn94PSr\6" \D\AS3SmSn94PSs\6" \D\AS3StSn94PSu\6" \D\AS3SvSn94PSw\6" \D\AS3StSn94PSx\6" \D\AS3SvSn94PSy\4PSz\6" \P" \AS15      \A\5      4PS{\" \A\A5      4PS|\" \A\G5      4PS}\M" \A5      4PS~\M" \A\B5      4PS\M" \A\B\C5      4PS\" S5      " \A5      4PS\" S5      " \A\B-   5      4PS\" \M" \A5      \A5      4PS\" \" S5      " \A5      \A5      4PSN\" \A\B5      4PS\S" \A5      4PS\S" \!" \A5      5      4PS\S" \A5      \S" \B5      -  4PS\S" \S" \A5      \S" \B5      -  5      4PS\" S5      \S" \A\B-  5      -  4PS\4" \A\A5      4PS\4" \A\L5      4PS\4" \AS.-  \B-
  \A5      4PS\4" \N" \A\D5      \A5      4PS\4" S4\D5      4PS\4" S4\AS Sj45      4PS\4" \A\AS S445      4PS\4" \A\A\D\E45      4PS\4" \A\A\D\E45      4PS\4" \A\A\D\E45      4PS\4" \A\A\D\E45      4PS\4" \A\A\D\E45      4PS\4" \A\A\D\E45      4PS\4" \M" \C5      \C\M" \D5      \M" \E5      45      4PS\4" \N" \A\D5      \A5      4PS\4" \N" \N" \D\E5      \F5      \A5      4PS\4" \" \CS15      \C5      4PS\4" S3\" \CS15      -  \C5      4PS\4" \" \AS15      \A5      4PS\4" \N" \P" \DS15      \" \ES15      5      \A5      4PS\4" S3\P" \LS15      -  \L5      4PS\4" \N" \P" \AS15      S45      \A5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" S5      " \" S5      \" S5      5      4PS\T" \A5      4PS\T" S5      4PS\T" \L5      4PS\T" \N" \AS45      5      4PS\T" \T" \A5      5      4PS\T" \T" \T" \A5      5      5      4PS\O" \T" S5      \T" Sj5      5      4PS\+" \A5      4PS\+" \N" \A\E5      5      4PS\*" \1" \A5      S35      4PS\*" \1" \A5      \B5      4PS\*" \1" \A5      \L5      4PS\Q" \O" S\P" SS15      5      5      4PS\R" \C5      4PS\R" \R" \C5      5      4PS\R" \N" \A\B5      5      4PS\R" \A5      \R" \B5      -   4PSO\" \A\B5      4PSQ\" \A\B5      4PSP\" \A\B5      4PSR\" \A\B5      4PS\" S,5      4PS\" S5      4PS\" S5      4PS\" S5      4PS\" \F\HS4S345      4PS\" \F\HS4S345      4PS\" \F\HS4S345      4PS\" \F\HS4S345      4PS\" \HS.-  \HS4S45      4PS\" \P" \T" \I5      S15      \IS \45      4PS\" \A\D\E\F45      4PS\" \A\D\E\F45      4PS\" \A\D\E\F45      4PS\" \A\D\E\F45      4PS\U" \A5      4PS\U" \A5      4PS\V" \AS5      4PS\V" \A\5      4PS\V" \A\B-  \5      4PS\V" \A\5      4PS\V" \A\B-  \5      4PS\V" \AS.5      4PS\V" \A\D5      4PS\V" \AS5      4PS\V" \A\P" \DS.5      5      4PS\A4PS\N" \D\E5      4PS\" \2" \A5      \A5      4PS\W" \I\H5      4PS\W" \I\H5      4PS\W" \I\H5      4PS\W" \IS 5      4PS\P" \A\W" \I\H5      5      4PS\O" \D\E5      4PS\O" \D\E5      4PS\O" \D\E5      4PS\O" \D\E5      4PS\O" \D\E5      4PS\O" \D\E5      4PS\O" \D\E5      4PS\O" \D\E5      4PS\O" \D\E5      4PS\O" \D\E5      4PS\O" \D\E5      4PS\O" \D\E5      4PS\4" \A\A5      4PS\V" \AS.5      4PS\V" \A\D5      4PS\N" \P" SS 5      \O" S1\P" SS 5      5      5      4PS\N" \O" S3\A5      S15      4PrYS rZ/ SQr[S r\/ SQr]\S 5       r^S r_g)    )raisesXFAIL)import_module)Product)SumAdd)
DerivativeFunctionMul)EooPow)GreaterThanLessThanStrictGreaterThanStrictLessThan
Unequality)Symbol)binomial	factorial)Abs	conjugate)explog)ceilingfloor)rootsqrt)asincoscscsecsintan)Integral)Limit)EqNeLtLeGtGe)BraKet)	xyzabctknantlr4Nthetafc                     [        XSS9$ NF)evaluater   r5   r6   s     V/var/www/auris/envauris/lib/python3.13/site-packages/sympy/parsing/tests/test_latex.py_AddrC   #       qe$$    c                     [        XSS9$ r?   r   rA   s     rB   _MulrG   '   rD   rE   c                     [        XSS9$ r?   r   rA   s     rB   _PowrI   +   rD   rE   c                     [        U SS9$ r?   )r!   r5   s    rB   _SqrtrL   /   s    E""rE   c                     [        U SS9$ r?   )r   rK   s    rB   
_ConjugaterN   3       Q''rE   c                     [        U SS9$ r?   )r   rK   s    rB   _AbsrQ   7       q5!!rE   c                     [        U SS9$ r?   )r   rK   s    rB   
_factorialrT   ;   rO   rE   c                     [        U SS9$ r?   )r   rK   s    rB   _exprV   ?   rR   rE   c                     [        XSS9$ r?   )r   rA   s     rB   _logrX   C   rD   rE   c                     [        XSS9$ r?   )r   )r:   r9   s     rB   	_binomialrZ   G   s    A5))rE   c                      SSK Jn JnJn  A AAg )Nr   build_parsercheck_antlr_versiondir_latex_antlr)&sympy.parsing.latex._build_latex_antlrr]   r^   r_   r\   s      rB   test_importra   K   s      	)?rE   )0r   )1   )z-3.14gQ	z(-7.13)(1.5)gQg      ?r2   2x   zx^2zx^\frac{1}{2}z	x^{3 + 1}   rd   z-cz	a \cdot bza / bza \div bza + bz	a + b - aza^2 + b^2 = c^2z	(x + y) zza'b+ab'za'zb'zy''_1zy_{1}''zy_1''z\left(x + y\right) zz\left( x + y\right ) zz\left(  x + y\right ) zz\left[x + y\right] zz\left\{x + y\right\} zz1+1z0+1z1*2z0*1z1 \times 2 zx = yzx \neq yzx < yzx > yzx \leq yzx \geq yzx \le yzx \ge yz\lfloor x \rfloorz\lceil x \rceilz\langle x |z| x \ranglez\sin \thetaz\sin(\theta)z\sin^{-1} az\sin a \cos bz\sin \cos \thetaz\sin(\cos \theta)z\frac{a}{b}z\dfrac{a}{b}z\tfrac{a}{b}z\frac12z\frac12yz	\frac1234"   z	\frac2{3}z\frac{\sin{x}}2z\frac{a + b}{c}z\frac{7}{3}   z(\csc x)(\sec y)z\lim_{x \to 3} az+-)dirz\lim_{x \rightarrow 3} az\lim_{x \Rightarrow 3} az\lim_{x \longrightarrow 3} az\lim_{x \Longrightarrow 3} az\lim_{x \to 3^{+}} a+z\lim_{x \to 3^{-}} a-z\lim_{x \to 3^+} az\lim_{x \to 3^-} az\inftyz\lim_{x \to \infty} \frac{1}{x}z\frac{d}{dx} xz\frac{d}{dt} xzf(x)zf(x, y)z
f(x, y, z)zf'_1(x)zf_{1}'zf_{1}''(x+y)zf_{1}''z\frac{d f(x)}{dx}z\frac{d\theta(x)}{dx}z|x|z||x||z|x||y|z||x||y||z
\pi^{|xy|}piz	\int x dxz\int x d\thetaz\int (x^2 - y)dxz\int x + a dxz\int daz\int_0^7 dxz\int\limits_{0}^{1} x dxz\int_a^b x dxz\int^b_a x dxz\int_{a}^b x dxz\int^{b}_a x dxz\int_{a}^{b} x dxz\int^{b}_{a} x dxz\int_{f(a)}^{f(b)} f(z) dzz
\int (x+a)z\int a + b + c dxz\int \frac{dz}{z}z\int \frac{3 dz}{z}z\int \frac{1}{x} dxz!\int \frac{1}{a} + \frac{1}{b} dxz#\int \frac{3 \cdot d\theta}{\theta}z\int \frac{1}{x} + 1 dxx_0zx_{0}zx_{1}x_azx_{a}zx_{b}zh_\thetaz	h_{theta}z
h_{\theta}zh_{\theta}(x_0, x_1)zx!z100!d   z\theta!z(x + 1)!z(x!)!zx!!!z5!7!   z\sqrt{x}z\sqrt{x + b}z\sqrt[3]{\sin x}z\sqrt[y]{\sin x}z\sqrt[\theta]{\sin x}z\sqrt{\frac{12}{6}}      z\overline{z}z\overline{\overline{z}}z\overline{x + y}z\overline{x} + \overline{y}z
\mathit{x}z\mathit{test}testz\mathit{TEST}TESTz\mathit{HELLO world}zHELLO worldz\sum_{k = 1}^{3} cz\sum_{k = 1}^3 cz\sum^{3}_{k = 1} cz\sum^3_{k = 1} cz\sum_{k = 1}^{10} k^2
   z"\sum_{n = 0}^{\infty} \frac{1}{n!}z\prod_{a = b}^{c} xz\prod_{a = b}^c xz\prod^{c}_{a = b} xz\prod^c_{a = b} xz\exp xz\exp(x)z\lg xz\ln xz\ln xyz\log xz\log xyz
\log_{2} xz
\log_{a} xz\log_{11} x   z\log_{a^2} xz[x]z[a + b]z\frac{d}{dx} [ \tan x ]z\binom{n}{k}z\tbinom{n}{k}z\dbinom{n}{k}z\binom{n}{0}zx^\binom{n}{k}za \, bza \thinspace bza \: bza \medspace bza \; bza \thickspace bz	a \quad bz
a \qquad bza \! bza \negthinspace bza \negmedspace bza \negthickspace bz\int x \, dxz\log_2 xz\log_a xz	5^0 - 4^0   z3x - 1c                  T    SSK Jn   [         H  u  pU " U5      U:X  a  M   U5       e   g )Nr   )parse_latex)sympy.parsing.latexr{   
GOOD_PAIRS)r{   	latex_str
sympy_exprs      rB   test_parseabler     s*    /!+	9%3>Y>3 ",rE   )&()z\frac{d}{dx}z(\frac{d}{dx})z\sqrt{}z\sqrtz\overline{}z	\overline{}z\mathit{x + y}z\mathit{21}z
\frac{2}{}z
\frac{}{2}z\int!z!0_^|z||x|z()z"((((((((((((((((()))))))))))))))))rm   z\frac{d}{dx} + \frac{d}{dt}zf(x,,y)zf(x,y,z\sin^xz\cos^2@#$%&*\~z\frac{(2 + x}{1 - x)}c                      SSK Jn Jn  [         H  n[	        U5         U " U5        S S S 5        M!     g ! , (       d  f       M3  = fNr   r{   LaTeXParsingError)r|   r{   r   BAD_STRINGSr   r{   r   r~   s      rB   test_not_parseabler   F  s/    B 	%&	" '& !&&	   	3
A	)
z\cos 1 \coszf(,zf()za \div \div bza \cdot \cdot bza // bza +z1.1.1z1 +za / b /c                      SSK Jn Jn  [         H  n[	        U5         U " U5        S S S 5        M!     g ! , (       d  f       M3  = fr   r|   r{   r   FAILING_BAD_STRINGSr   r   s      rB   test_failing_not_parseabler   Z  s/    B(	%&	" '& )&&r   c                      SSK Jn Jn  [         H  n[	        U5         U " USS9  S S S 5        M      g ! , (       d  f       M2  = f)Nr   r   T)strictr   r   s      rB   test_strict_moder   b  s1    B(	%&	$/ '& )&&s	   2
A	)`sympy.testing.pytestr   r   sympy.externalr   sympy.concrete.productsr   sympy.concrete.summationsr   sympy.core.addr	   sympy.core.functionr
   r   sympy.core.mulr   sympy.core.numbersr   r   sympy.core.powerr   sympy.core.relationalr   r   r   r   r   sympy.core.symbolr   (sympy.functions.combinatorial.factorialsr   r   $sympy.functions.elementary.complexesr   r   &sympy.functions.elementary.exponentialr   r   #sympy.functions.elementary.integersr   r   (sympy.functions.elementary.miscellaneousr    r!   (sympy.functions.elementary.trigonometricr"   r#   r$   r%   r&   r'   sympy.integrals.integralsr(   sympy.series.limitsr)   r*   r+   r,   r-   r.   r/   sympy.physics.quantum.stater0   r1   	sympy.abcr2   r3   r4   r5   r6   r7   r8   r9   r:   r;   disabledr<   r=   rC   rG   rI   rL   rN   rQ   rT   rV   rX   rZ   ra   r}   r   r   r   r   r   r    rE   rB   <module>r      sI   . ( + )  6  &   h h $ J A = @ A T T . % 8 8 0 / / /	x	  T>wSM%%%#("("%*;~~~ ~ d5#&'	~
 
1I~ AaCL~ QTN~ tAtAr{+,~ 1d1aj=!~ QBK~ 1q5~ q1u~ !a%~ q1u~ 4!aR=!~  AqD1a4KA./!~" 4Q
A&'#~$ d6$<+T!VD\-BCD%~& vi !'~( vi !)~* d41:q12+~, T!QZ 34-~.  d1aj!!45/~0 d41:q121~2 T!QZ 343~4 T!QZ5~6 T!QZ7~8 T!QZ9~: T!QZ;~< T!QZ =~> r!Qx?~@ "Q(A~B r!QxC~D r!QxE~F "Q(G~H "Q(I~J AqK~L AqM~N 58$O~P $Q~R SXS~T SXU~V SZ W~X c%j!Y~Z T!W[~\ tCFCF+,]~^ #c%j/*_~` 3s5z?+a~b QUc~d a!ee~f a!eg~h ai~j $tAr{A&'k~l 4QR()m~n 442;'(o~p c!fd1bk23q~r a!eT!R[12s~t T!T!R[)*u~v #a&Q-(w~x %1aT23y~z !%1aT":;{~| !%1aT":;}~~ %eAq!&>?~@ %eAq!&>?A~B eAq!56C~D eAq!56E~F E!Qs34G~H E!Qs34I~J OK~L (tAr{Ar)BCM~N 
1a()O~P 
1a()Q~R adOS~T 1aU~V AaAJW~X (#A&'Y~Z hy)!A#./[~\ :adA./]~^ z(7*;A*>BC_~` *Q"#a~b T!Wc~d tCF|e~f QQ g~h $tAwtAw'(i~j F4L$qs)+,k~l 8Aq>"m~n E*+o~p (1a4!8Q/0q~r xQ
A./s~t !Q u~v Xa!Q+,w~x !(1q!Qi"89y~z xAq!9-.{~| xAq!9-.}~~ !aAY/0~@ !aAY/0A~B 8A1ay12C~D 8A1ay12E~F #HQqTAqtQqT?$CDG~H HT!QZ+,I~J 8DaQ$7;<K~L 8C2J23M~N XaAr
lA67O~P Xc!Rj!45Q~R *d42;Ar
+Q/1S~V ,aUB')W~Z  $tAr{A*>!BC[~\ VG_]~^ vg_~` VG_a~b vgc~d &%&e~f F;'(g~h k6'?F7O<>i~l JqMm~n joo~p E"#q~r *T!QZ()s~t z*Q-()u~v jJqM234w~x d:a=*Q-01y~z $q'{~| d41:&'}~~ $s1vq/*~@ $s1vq/*A~B tCFE23C~D U4DBK#89:E~F jm$G~H  JqM!:;I~J *T!QZ01K~L $Z]Z]%BCM~N ~a#$O~P (1a.!Q~R  A&'S~T +a#$U~V F3K W~X vf~&Y~Z vf~&[~\ f]34]~^ CAq!9-._~` #a!Q+,a~b CAq!9-.c~d #a!Q+,e~f s1a4!Q45g~h +jmR	 1a*-/i~l WQAq	23m~n 71q!Qi01o~p WQAq	23q~r 71q!Qi01s~t Qu~v aw~x tAr{y~z tAqz{~| QqS!}~~ Q
~@ ac1A~B DAJC~D DAJE~F T!R[!G~H d1d1aj)*I~J QKK~L aM~N  CFA!67O~P i1o&Q~R yA'S~T yA'U~V i1o&W~X Q	!Q01Y~Z Q
[~\ Q
#]~^ Q
_~` tAqz"a~b Q
c~d a$e~f 41:g~h DAJi~j Q
k~l 41:&m~n $q!*%o~p DAJ'q~r hq!n%s~t $q!*u~v $q!*w~x 4Q
DT!QZ$89:y~z T!QZ$%{~
B?'R#  # #0rE   