
    \h                      z    S SK JrJrJr  S SKJrJr  S SKJr  S SK	J
r
  S SKJr  S SKJr  S SKJr   " S S	\5      rg
)    )Soodiff)DefinedFunctionArgumentIndexError)	fuzzy_not)Eq)im)	Piecewise)	Heavisidec                   Z    \ rS rSrSrSrSS jr\S 5       rS r	S r
S rSS
 jr\
r\
rSrg	)SingularityFunction   au  
Singularity functions are a class of discontinuous functions.

Explanation
===========

Singularity functions take a variable, an offset, and an exponent as
arguments. These functions are represented using Macaulay brackets as:

SingularityFunction(x, a, n) := <x - a>^n

The singularity function will automatically evaluate to
``Derivative(DiracDelta(x - a), x, -n - 1)`` if ``n < 0``
and ``(x - a)**n*Heaviside(x - a, 1)`` if ``n >= 0``.

Examples
========

>>> from sympy import SingularityFunction, diff, Piecewise, DiracDelta, Heaviside, Symbol
>>> from sympy.abc import x, a, n
>>> SingularityFunction(x, a, n)
SingularityFunction(x, a, n)
>>> y = Symbol('y', positive=True)
>>> n = Symbol('n', nonnegative=True)
>>> SingularityFunction(y, -10, n)
(y + 10)**n
>>> y = Symbol('y', negative=True)
>>> SingularityFunction(y, 10, n)
0
>>> SingularityFunction(x, 4, -1).subs(x, 4)
oo
>>> SingularityFunction(x, 10, -2).subs(x, 10)
oo
>>> SingularityFunction(4, 1, 5)
243
>>> diff(SingularityFunction(x, 1, 5) + SingularityFunction(x, 1, 4), x)
4*SingularityFunction(x, 1, 3) + 5*SingularityFunction(x, 1, 4)
>>> diff(SingularityFunction(x, 4, 0), x, 2)
SingularityFunction(x, 4, -2)
>>> SingularityFunction(x, 4, 5).rewrite(Piecewise)
Piecewise(((x - 4)**5, x >= 4), (0, True))
>>> expr = SingularityFunction(x, a, n)
>>> y = Symbol('y', positive=True)
>>> n = Symbol('n', nonnegative=True)
>>> expr.subs({x: y, a: -10, n: n})
(y + 10)**n

The methods ``rewrite(DiracDelta)``, ``rewrite(Heaviside)``, and
``rewrite('HeavisideDiracDelta')`` returns the same output. One can use any
of these methods according to their choice.

>>> expr = SingularityFunction(x, 4, 5) + SingularityFunction(x, -3, -1) - SingularityFunction(x, 0, -2)
>>> expr.rewrite(Heaviside)
(x - 4)**5*Heaviside(x - 4, 1) + DiracDelta(x + 3) - DiracDelta(x, 1)
>>> expr.rewrite(DiracDelta)
(x - 4)**5*Heaviside(x - 4, 1) + DiracDelta(x + 3) - DiracDelta(x, 1)
>>> expr.rewrite('HeavisideDiracDelta')
(x - 4)**5*Heaviside(x - 4, 1) + DiracDelta(x + 3) - DiracDelta(x, 1)

See Also
========

DiracDelta, Heaviside

References
==========

.. [1] https://en.wikipedia.org/wiki/Singularity_function

Tc                 .   US:X  a  U R                   u  p#nU[        R                  [        R                  [        S5      [        S5      4;   a  U R	                  X#US-
  5      $ UR
                  (       a  X@R	                  X#US-
  5      -  $ g[        X5      e)a  
Returns the first derivative of a DiracDelta Function.

Explanation
===========

The difference between ``diff()`` and ``fdiff()`` is: ``diff()`` is the
user-level function and ``fdiff()`` is an object method. ``fdiff()`` is
a convenience method available in the ``Function`` class. It returns
the derivative of the function without considering the chain rule.
``diff(function, x)`` calls ``Function._eval_derivative`` which in turn
calls ``fdiff()`` internally to compute the derivative of the function.

   N)argsr   ZeroNegativeOnefuncis_positiver   )selfargindexxans        e/var/www/auris/envauris/lib/python3.13/site-packages/sympy/functions/special/singularity_functions.pyfdiffSingularityFunction.fdiffX   s      q=iiGA!QVVQ]]AbE1R599yyqs++11---  %T44    c                    UnUnUnXE-
  n[        [        U5      R                  5      (       a  [        S5      e[        [        U5      R                  5      (       a  [        S5      eU[        R
                  L d  U[        R
                  L a  [        R
                  $ US-   R                  (       a  [        S5      eUR                  (       a  [        R                  $ UR                  (       a9  UR                  (       a  [        R                  U-  $ UR                  (       a  Xv-  $ U[        R                  SSS4;   aJ  UR                  (       d  UR                  (       a  [        R                  $ UR                  (       a  [        $ gg)	a@  
Returns a simplified form or a value of Singularity Function depending
on the argument passed by the object.

Explanation
===========

The ``eval()`` method is automatically called when the
``SingularityFunction`` class is about to be instantiated and it
returns either some simplified instance or the unevaluated instance
depending on the argument passed. In other words, ``eval()`` method is
not needed to be called explicitly, it is being called and evaluated
once the object is called.

Examples
========

>>> from sympy import SingularityFunction, Symbol, nan
>>> from sympy.abc import x, a, n
>>> SingularityFunction(x, a, n)
SingularityFunction(x, a, n)
>>> SingularityFunction(5, 3, 2)
4
>>> SingularityFunction(x, a, nan)
nan
>>> SingularityFunction(x, 3, 0).subs(x, 3)
1
>>> SingularityFunction(4, 1, 5)
243
>>> x = Symbol('x', positive = True)
>>> a = Symbol('a', negative = True)
>>> n = Symbol('n', nonnegative = True)
>>> SingularityFunction(x, a, n)
(-a + x)**n
>>> x = Symbol('x', negative = True)
>>> a = Symbol('a', positive = True)
>>> SingularityFunction(x, a, n)
0

z8Singularity Functions are defined only for Real Numbers.z>Singularity Functions are not defined for imaginary exponents.   zASingularity Functions are not defined for exponents less than -4.r   r   N)r   r
   is_zero
ValueErrorr   NaNis_negativeis_extended_negativer   is_nonnegativeis_extended_nonnegativer   is_extended_positiver   )clsvariableoffsetexponentr   r   r   shifts           r   evalSingularityFunction.evalq   s   V RY&&''WXXRU]]##]^^AEE>Q!%%Z55LE`aa%%66M}}vvqy ,,xB++  E$>$>vv}}	  ,r!   c                    U R                   u  p4nU[        R                  [        S5      [        S5      [        S5      4;   a  [        [        [        X4-
  S5      4S5      $ UR                  (       a  [        X4-
  U-  X4-
  S:  4S5      $ g)zF
Converts a Singularity Function expression into its Piecewise form.

r   r   r$   r   )r   TN)r   r   r   r   r   r	   r*   r   r   kwargsr   r   r   s         r   _eval_rewrite_as_Piecewise.SingularityFunction._eval_rewrite_as_Piecewise   sx    
 ))a"quae44b"QUA,/;;quqj!%1*5yAA r!   c                     U R                   u  p4nUS:X  a0  [        [        X4-
  5      UR                  R	                  5       S5      $ US:X  a0  [        [        X4-
  5      UR                  R	                  5       S5      $ US:X  a0  [        [        X4-
  5      UR                  R	                  5       S5      $ US:X  a0  [        [        X4-
  5      UR                  R	                  5       S5      $ UR
                  (       a  X4-
  U-  [        X4-
  S5      -  $ g	)
zO
Rewrites a Singularity Function expression using Heavisides and DiracDeltas.

r$   r#   r      r      r   N)r   r   r   free_symbolspopr*   r5   s         r   _eval_rewrite_as_Heaviside.SingularityFunction._eval_rewrite_as_Heaviside   s    
 ))a7	!%(!..*<*<*>BB7	!%(!..*<*<*>BB7	!%(!..*<*<*>BB7	!%(!..*<*<*>BBEA:iq111 r!   c                 N   U R                   u  pEnXE-
  R                  US5      nUS:  a  [        R                  $ UR                  (       a7  UR                  (       a&  US:X  a  [        R                  $ [        R
                  $ UR                  (       a  Xv-  $ [        R                  $ )Nr   r<   )r   subsr   r   r%   Oner   )r   r   logxcdirzr   r   r1   s           r   _eval_as_leading_term)SingularityFunction._eval_as_leading_term   sp    ))aQ"q566MYY5==!RZ1662QUU28Ovvr!   Nc                 p   U R                   u  pVnXV-
  R                  US5      nUS:  a  [        R                  $ UR                  (       a7  UR                  (       a&  US:X  a  [        R                  $ [        R
                  $ UR                  (       a  XV-
  U-  R                  XX4S9$ [        R                  $ )Nr   r<   )rD   rE   )r   rB   r   r   r%   rC   r   _eval_nseries)r   r   r   rD   rE   rF   r   r1   s           r   rJ   !SingularityFunction._eval_nseries   s    ))aQ"q566MYY5==!RZ1662QUU2UQJ--a-IIvvr!    )r   )Nr   )__name__
__module____qualname____firstlineno____doc__is_realr   classmethodr2   r7   r?   rG   rJ   _eval_rewrite_as_DiracDelta$_eval_rewrite_as_HeavisideDiracDelta__static_attributes__rL   r!   r   r   r      sO    EN G52 B BH
B2$		 #=+E(r!   r   N)
sympy.corer   r   r   sympy.core.functionr   r   sympy.core.logicr   sympy.core.relationalr	   $sympy.functions.elementary.complexesr
   $sympy.functions.elementary.piecewiser   'sympy.functions.special.delta_functionsr   r   rL   r!   r   <module>r^      s-    " " C & $ 3 : =]F/ ]Fr!   