
    \h                         S r SSKJrJr  SSKJr  SSKJrJr   " S S\5      r	 " S S\	5      r
 " S	 S
\	5      r " S S\	5      r " S S\	5      rg)z,This module contains the Mathieu functions.
    )DefinedFunctionArgumentIndexError)sqrt)sincosc                   "    \ rS rSrSrSrS rSrg)MathieuBase	   z^
Abstract base class for Mathieu functions.

This class is meant to reduce code duplication.

Tc                     U R                   u  pnU R                  UR                  5       UR                  5       UR                  5       5      $ N)argsfunc	conjugate)selfaqzs       a/var/www/auris/envauris/lib/python3.13/site-packages/sympy/functions/special/mathieu_functions.py_eval_conjugateMathieuBase._eval_conjugate   s4    ))ayyq{{}EE     N)__name__
__module____qualname____firstlineno____doc__
unbranchedr   __static_attributes__r   r   r   r	   r	   	   s     JFr   r	   c                   2    \ rS rSrSrSS jr\S 5       rSrg)mathieus   at  
The Mathieu Sine function $S(a,q,z)$.

Explanation
===========

This function is one solution of the Mathieu differential equation:

.. math ::
    y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0

The other solution is the Mathieu Cosine function.

Examples
========

>>> from sympy import diff, mathieus
>>> from sympy.abc import a, q, z

>>> mathieus(a, q, z)
mathieus(a, q, z)

>>> mathieus(a, 0, z)
sin(sqrt(a)*z)

>>> diff(mathieus(a, q, z), z)
mathieusprime(a, q, z)

See Also
========

mathieuc: Mathieu cosine function.
mathieusprime: Derivative of Mathieu sine function.
mathieucprime: Derivative of Mathieu cosine function.

References
==========

.. [1] https://en.wikipedia.org/wiki/Mathieu_function
.. [2] https://dlmf.nist.gov/28
.. [3] https://mathworld.wolfram.com/MathieuFunction.html
.. [4] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuS/

c                 Z    US:X  a  U R                   u  p#n[        X#U5      $ [        X5      eN   )r   mathieusprimer   r   argindexr   r   r   s        r   fdiffmathieus.fdiffF   .    q=iiGA! q))$T44r   c                     UR                   (       a(  UR                  (       a  [        [        U5      U-  5      $ UR	                  5       (       a  U " XU* 5      * $ g r   )	is_Numberis_zeror   r   could_extract_minus_signclsr   r   r   s       r   evalmathieus.evalM   sE    ;;199tAwqy>!%%''qbM>! (r   r   N   	r   r   r   r   r   r)   classmethodr2   r   r   r   r   r!   r!      !    +Z5 " "r   r!   c                   2    \ rS rSrSrSS jr\S 5       rSrg)mathieucV   ao  
The Mathieu Cosine function $C(a,q,z)$.

Explanation
===========

This function is one solution of the Mathieu differential equation:

.. math ::
    y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0

The other solution is the Mathieu Sine function.

Examples
========

>>> from sympy import diff, mathieuc
>>> from sympy.abc import a, q, z

>>> mathieuc(a, q, z)
mathieuc(a, q, z)

>>> mathieuc(a, 0, z)
cos(sqrt(a)*z)

>>> diff(mathieuc(a, q, z), z)
mathieucprime(a, q, z)

See Also
========

mathieus: Mathieu sine function
mathieusprime: Derivative of Mathieu sine function
mathieucprime: Derivative of Mathieu cosine function

References
==========

.. [1] https://en.wikipedia.org/wiki/Mathieu_function
.. [2] https://dlmf.nist.gov/28
.. [3] https://mathworld.wolfram.com/MathieuFunction.html
.. [4] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuC/

c                 Z    US:X  a  U R                   u  p#n[        X#U5      $ [        X5      er$   )r   mathieucprimer   r'   s        r   r)   mathieuc.fdiff   r+   r   c                     UR                   (       a(  UR                  (       a  [        [        U5      U-  5      $ UR	                  5       (       a
  U " XU* 5      $ g r   )r-   r.   r   r   r/   r0   s       r   r2   mathieuc.eval   sC    ;;199tAwqy>!%%''qaR=  (r   r   Nr4   r6   r   r   r   r:   r:   V   !    +Z5 ! !r   r:   c                   2    \ rS rSrSrSS jr\S 5       rSrg)r&      a  
The derivative $S^{\prime}(a,q,z)$ of the Mathieu Sine function.

Explanation
===========

This function is one solution of the Mathieu differential equation:

.. math ::
    y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0

The other solution is the Mathieu Cosine function.

Examples
========

>>> from sympy import diff, mathieusprime
>>> from sympy.abc import a, q, z

>>> mathieusprime(a, q, z)
mathieusprime(a, q, z)

>>> mathieusprime(a, 0, z)
sqrt(a)*cos(sqrt(a)*z)

>>> diff(mathieusprime(a, q, z), z)
(-a + 2*q*cos(2*z))*mathieus(a, q, z)

See Also
========

mathieus: Mathieu sine function
mathieuc: Mathieu cosine function
mathieucprime: Derivative of Mathieu cosine function

References
==========

.. [1] https://en.wikipedia.org/wiki/Mathieu_function
.. [2] https://dlmf.nist.gov/28
.. [3] https://mathworld.wolfram.com/MathieuFunction.html
.. [4] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuSPrime/

c                     US:X  a3  U R                   u  p#nSU-  [        SU-  5      -  U-
  [        X#U5      -  $ [        X5      eNr%      )r   r   r!   r   r'   s        r   r)   mathieusprime.fdiff   H    q=iiGA!aCAaCL1$hqQ&777$T44r   c                     UR                   (       a4  UR                  (       a#  [        U5      [        [        U5      U-  5      -  $ UR	                  5       (       a
  U " XU* 5      $ g r   )r-   r.   r   r   r/   r0   s       r   r2   mathieusprime.eval   sL    ;;19973tAwqy>))%%''qaR=  (r   r   Nr4   r6   r   r   r   r&   r&      rA   r   r&   c                   2    \ rS rSrSrSS jr\S 5       rSrg)r=      a  
The derivative $C^{\prime}(a,q,z)$ of the Mathieu Cosine function.

Explanation
===========

This function is one solution of the Mathieu differential equation:

.. math ::
    y(x)^{\prime\prime} + (a - 2 q \cos(2 x)) y(x) = 0

The other solution is the Mathieu Sine function.

Examples
========

>>> from sympy import diff, mathieucprime
>>> from sympy.abc import a, q, z

>>> mathieucprime(a, q, z)
mathieucprime(a, q, z)

>>> mathieucprime(a, 0, z)
-sqrt(a)*sin(sqrt(a)*z)

>>> diff(mathieucprime(a, q, z), z)
(-a + 2*q*cos(2*z))*mathieuc(a, q, z)

See Also
========

mathieus: Mathieu sine function
mathieuc: Mathieu cosine function
mathieusprime: Derivative of Mathieu sine function

References
==========

.. [1] https://en.wikipedia.org/wiki/Mathieu_function
.. [2] https://dlmf.nist.gov/28
.. [3] https://mathworld.wolfram.com/MathieuFunction.html
.. [4] https://functions.wolfram.com/MathieuandSpheroidalFunctions/MathieuCPrime/

c                     US:X  a3  U R                   u  p#nSU-  [        SU-  5      -  U-
  [        X#U5      -  $ [        X5      erE   )r   r   r:   r   r'   s        r   r)   mathieucprime.fdiff   rH   r   c                     UR                   (       a5  UR                  (       a$  [        U5      * [        [        U5      U-  5      -  $ UR	                  5       (       a  U " XU* 5      * $ g r   )r-   r.   r   r   r/   r0   s       r   r2   mathieucprime.eval  sP    ;;199G8CQ	N**%%''qbM>! (r   r   Nr4   r6   r   r   r   r=   r=      r8   r   r=   N)r   sympy.core.functionr   r   (sympy.functions.elementary.miscellaneousr   (sympy.functions.elementary.trigonometricr   r   r	   r!   r:   r&   r=   r   r   r   <module>rT      sW    D 9 =F/ F;"{ ;"|;!{ ;!|;!K ;!|;"K ;"r   