
    \h                         S r SSKJr  SSKJrJrJrJrJrJ	r	  SSK
Jr  / SQr " S S\5      r " S	 S
\5      r " S S\5      r " S S\5      r " S S\5      r " S S\5      rg)a4  
Module for mathematical equality [1] and inequalities [2].

The purpose of this module is to provide the instances which represent the
binary predicates in order to combine the relationals into logical inference
system. Objects such as ``Q.eq``, ``Q.lt`` should remain internal to
assumptions module, and user must use the classes such as :obj:`~.Eq()`,
:obj:`~.Lt()` instead to construct the relational expressions.

References
==========

.. [1] https://en.wikipedia.org/wiki/Equality_(mathematics)
.. [2] https://en.wikipedia.org/wiki/Inequality_(mathematics)
    )Q)is_eqis_neqis_gtis_geis_ltis_le   )BinaryRelation)EqualityPredicateUnequalityPredicateStrictGreaterThanPredicateGreaterThanPredicateStrictLessThanPredicateLessThanPredicatec                   B    \ rS rSrSrSrSrSrSr\	S 5       r
S	S jrSrg)
r      a  
Binary predicate for $=$.

The purpose of this class is to provide the instance which represent
the equality predicate in order to allow the logical inference.
This class must remain internal to assumptions module and user must
use :obj:`~.Eq()` instead to construct the equality expression.

Evaluating this predicate to ``True`` or ``False`` is done by
:func:`~.core.relational.is_eq`

Examples
========

>>> from sympy import ask, Q
>>> Q.eq(0, 0)
Q.eq(0, 0)
>>> ask(_)
True

See Also
========

sympy.core.relational.Eq

TeqNc                 "    [         R                  $ N)r   neselfs    [/var/www/auris/envauris/lib/python3.13/site-packages/sympy/assumptions/relation/equality.pynegatedEqualityPredicate.negated:       tt    c                 ,    US:X  a  S n[        / UQUP76 $ NT)r   r   argsassumptionss      r   evalEqualityPredicate.eval>   "    $K(d(K((r    T__name__
__module____qualname____firstlineno____doc__is_reflexiveis_symmetricnamehandlerpropertyr   r$   __static_attributes__r'   r   r   r   r      s4    4 LLDG )r   r   c                   B    \ rS rSrSrSrSrSrSr\	S 5       r
S
S jrS	rg)r   E   a  
Binary predicate for $\neq$.

The purpose of this class is to provide the instance which represent
the inequation predicate in order to allow the logical inference.
This class must remain internal to assumptions module and user must
use :obj:`~.Ne()` instead to construct the inequation expression.

Evaluating this predicate to ``True`` or ``False`` is done by
:func:`~.core.relational.is_neq`

Examples
========

>>> from sympy import ask, Q
>>> Q.ne(0, 0)
Q.ne(0, 0)
>>> ask(_)
False

See Also
========

sympy.core.relational.Ne

FTr   Nc                 "    [         R                  $ r   )r   r   r   s    r   r   UnequalityPredicate.negatedf   r   r   c                 ,    US:X  a  S n[        / UQUP76 $ r    )r   r!   s      r   r$   UnequalityPredicate.evalj   s"    $K)t)[))r   r'   r(   r)   r'   r   r   r   r   E   s4    4 LLDG *r   r   c                   R    \ rS rSrSrSrSrSrSr\	S 5       r
\	S 5       rS
S jrS	rg)r   q   a	  
Binary predicate for $>$.

The purpose of this class is to provide the instance which represent
the ">" predicate in order to allow the logical inference.
This class must remain internal to assumptions module and user must
use :obj:`~.Gt()` instead to construct the equality expression.

Evaluating this predicate to ``True`` or ``False`` is done by
:func:`~.core.relational.is_gt`

Examples
========

>>> from sympy import ask, Q
>>> Q.gt(0, 0)
Q.gt(0, 0)
>>> ask(_)
False

See Also
========

sympy.core.relational.Gt

FgtNc                 "    [         R                  $ r   r   ltr   s    r   reversed#StrictGreaterThanPredicate.reversed   r   r   c                 "    [         R                  $ r   r   ler   s    r   r   "StrictGreaterThanPredicate.negated   r   r   c                 ,    US:X  a  S n[        / UQUP76 $ r    )r   r!   s      r   r$   StrictGreaterThanPredicate.eval   r&   r   r'   r(   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   rA   r   r$   r4   r'   r   r   r   r   q   H    4 LLDG   )r   r   c                   R    \ rS rSrSrSrSrSrSr\	S 5       r
\	S 5       rSS	 jrS
rg)r      a
  
Binary predicate for $>=$.

The purpose of this class is to provide the instance which represent
the ">=" predicate in order to allow the logical inference.
This class must remain internal to assumptions module and user must
use :obj:`~.Ge()` instead to construct the equality expression.

Evaluating this predicate to ``True`` or ``False`` is done by
:func:`~.core.relational.is_ge`

Examples
========

>>> from sympy import ask, Q
>>> Q.ge(0, 0)
Q.ge(0, 0)
>>> ask(_)
True

See Also
========

sympy.core.relational.Ge

TFgeNc                 "    [         R                  $ r   rD   r   s    r   rA   GreaterThanPredicate.reversed   r   r   c                 "    [         R                  $ r   r?   r   s    r   r   GreaterThanPredicate.negated   r   r   c                 ,    US:X  a  S n[        / UQUP76 $ r    )r   r!   s      r   r$   GreaterThanPredicate.eval   r&   r   r'   r(   rI   r'   r   r   r   r      H    4 LLDG   )r   r   c                   R    \ rS rSrSrSrSrSrSr\	S 5       r
\	S 5       rS
S jrS	rg)r      a	  
Binary predicate for $<$.

The purpose of this class is to provide the instance which represent
the "<" predicate in order to allow the logical inference.
This class must remain internal to assumptions module and user must
use :obj:`~.Lt()` instead to construct the equality expression.

Evaluating this predicate to ``True`` or ``False`` is done by
:func:`~.core.relational.is_lt`

Examples
========

>>> from sympy import ask, Q
>>> Q.lt(0, 0)
Q.lt(0, 0)
>>> ask(_)
False

See Also
========

sympy.core.relational.Lt

Fr@   Nc                 "    [         R                  $ r   r   r=   r   s    r   rA    StrictLessThanPredicate.reversed   r   r   c                 "    [         R                  $ r   r   rM   r   s    r   r   StrictLessThanPredicate.negated   r   r   c                 ,    US:X  a  S n[        / UQUP76 $ r    )r   r!   s      r   r$   StrictLessThanPredicate.eval   r&   r   r'   r(   rI   r'   r   r   r   r      rJ   r   r   c                   R    \ rS rSrSrSrSrSrSr\	S 5       r
\	S 5       rSS	 jrS
rg)r   i  a
  
Binary predicate for $<=$.

The purpose of this class is to provide the instance which represent
the "<=" predicate in order to allow the logical inference.
This class must remain internal to assumptions module and user must
use :obj:`~.Le()` instead to construct the equality expression.

Evaluating this predicate to ``True`` or ``False`` is done by
:func:`~.core.relational.is_le`

Examples
========

>>> from sympy import ask, Q
>>> Q.le(0, 0)
Q.le(0, 0)
>>> ask(_)
True

See Also
========

sympy.core.relational.Le

TFrE   Nc                 "    [         R                  $ r   r[   r   s    r   rA   LessThanPredicate.reversed"  r   r   c                 "    [         R                  $ r   rX   r   s    r   r   LessThanPredicate.negated&  r   r   c                 ,    US:X  a  S n[        / UQUP76 $ r    )r	   r!   s      r   r$   LessThanPredicate.eval*  r&   r   r'   r(   rI   r'   r   r   r   r     rT   r   r   N)r.   sympy.assumptionsr   sympy.core.relationalr   r   r   r   r   r	   binrelr   __all__r   r   r   r   r   r   r'   r   r   <module>rj      sm      K K "L)) ))X)*. )*X-) -)`-)> -)`-)n -)`-) -)r   