o
    ZŽhÂ  ã                   @   s‚   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ e e¡ZG d	d
„ d
eƒZG dd„ de
ƒZd
dgZdS )zYOLOS model configurationé    ©ÚOrderedDict)ÚMapping)Úversioné   )ÚPretrainedConfig)Ú
OnnxConfig)Úloggingc                       sV   e Zd ZdZdZddddddddd	d
dgddddddddddddf‡ fdd„	Z‡  ZS )ÚYolosConfiga¨  
    This is the configuration class to store the configuration of a [`YolosModel`]. It is used to instantiate a YOLOS
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the YOLOS
    [hustvl/yolos-base](https://huggingface.co/hustvl/yolos-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`List[int]`, *optional*, defaults to `[512, 864]`):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        num_detection_tokens (`int`, *optional*, defaults to 100):
            The number of detection tokens.
        use_mid_position_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to use the mid-layer position encodings.
        auxiliary_loss (`bool`, *optional*, defaults to `False`):
            Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
        class_cost (`float`, *optional*, defaults to 1):
            Relative weight of the classification error in the Hungarian matching cost.
        bbox_cost (`float`, *optional*, defaults to 5):
            Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
        giou_cost (`float`, *optional*, defaults to 2):
            Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
        bbox_loss_coefficient (`float`, *optional*, defaults to 5):
            Relative weight of the L1 bounding box loss in the object detection loss.
        giou_loss_coefficient (`float`, *optional*, defaults to 2):
            Relative weight of the generalized IoU loss in the object detection loss.
        eos_coefficient (`float`, *optional*, defaults to 0.1):
            Relative classification weight of the 'no-object' class in the object detection loss.

    Example:

    ```python
    >>> from transformers import YolosConfig, YolosModel

    >>> # Initializing a YOLOS hustvl/yolos-base style configuration
    >>> configuration = YolosConfig()

    >>> # Initializing a model (with random weights) from the hustvl/yolos-base style configuration
    >>> model = YolosModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zyolosi   é   i   Zgelug        g{®Gáz”?gê-™—q=i   i`  é   r   Téd   Fé   é   é   gš™™™™™¹?c                    sš   t ƒ jdi |¤Ž || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _d S )N© )ÚsuperÚ__init__Úhidden_sizeÚnum_hidden_layersÚnum_attention_headsÚintermediate_sizeÚ
hidden_actÚhidden_dropout_probÚattention_probs_dropout_probÚinitializer_rangeÚlayer_norm_epsÚ
image_sizeÚ
patch_sizeÚnum_channelsÚqkv_biasÚnum_detection_tokensÚuse_mid_position_embeddingsÚauxiliary_lossÚ
class_costÚ	bbox_costÚ	giou_costÚbbox_loss_coefficientÚgiou_loss_coefficientÚeos_coefficient)Úselfr   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   Úkwargs©Ú	__class__r   ú\/var/www/auris/lib/python3.10/site-packages/transformers/models/yolos/configuration_yolos.pyr   h   s.   
zYolosConfig.__init__)Ú__name__Ú
__module__Ú__qualname__Ú__doc__Z
model_typer   Ú__classcell__r   r   r,   r.   r
      s4    Gér
   c                   @   s\   e Zd Ze d¡Zedeeee	ef f fdd„ƒZ
edefdd„ƒZede	fdd„ƒZd	S )
ÚYolosOnnxConfigz1.11Úreturnc                 C   s   t ddddddœfgƒS )NZpixel_valuesÚbatchr   ÚheightÚwidth)r   r   r   r   r   ©r*   r   r   r.   Úinputs¡   s   ÿÿzYolosOnnxConfig.inputsc                 C   ó   dS )Ng-Cëâ6?r   r9   r   r   r.   Úatol_for_validation©   ó   z#YolosOnnxConfig.atol_for_validationc                 C   r;   )Nr   r   r9   r   r   r.   Údefault_onnx_opset­   r=   z"YolosOnnxConfig.default_onnx_opsetN)r/   r0   r1   r   ÚparseZtorch_onnx_minimum_versionÚpropertyr   ÚstrÚintr:   Úfloatr<   r>   r   r   r   r.   r4   ž   s    
 r4   N)r2   Úcollectionsr   Útypingr   Ú	packagingr   Zconfiguration_utilsr   Zonnxr   Úutilsr	   Z
get_loggerr/   Úloggerr
   r4   Ú__all__r   r   r   r.   Ú<module>   s   
 