o
    Zh                     @   sj   d Z ddlmZ ddlmZ ddlmZ ddlmZ e	e
ZG dd deZG d	d
 d
eZdd
gZdS )zT5 model configuration    )Mapping   )PretrainedConfig)OnnxSeq2SeqConfigWithPast)loggingc                       s^   e Zd ZdZdZdgZdddddZ			
																d fdd	Z  ZS )T5Configa  
    This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to
    instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the T5
    [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Arguments:
        vocab_size (`int`, *optional*, defaults to 32128):
            Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`].
        d_model (`int`, *optional*, defaults to 512):
            Size of the encoder layers and the pooler layer.
        d_kv (`int`, *optional*, defaults to 64):
            Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will
            be defined as `num_heads * d_kv`.
        d_ff (`int`, *optional*, defaults to 2048):
            Size of the intermediate feed forward layer in each `T5Block`.
        num_layers (`int`, *optional*, defaults to 6):
            Number of hidden layers in the Transformer encoder.
        num_decoder_layers (`int`, *optional*):
            Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
        num_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        relative_attention_num_buckets (`int`, *optional*, defaults to 32):
            The number of buckets to use for each attention layer.
        relative_attention_max_distance (`int`, *optional*, defaults to 128):
            The maximum distance of the longer sequences for the bucket separation.
        dropout_rate (`float`, *optional*, defaults to 0.1):
            The ratio for all dropout layers.
        classifier_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for classifier.
        layer_norm_eps (`float`, *optional*, defaults to 1e-6):
            The epsilon used by the layer normalization layers.
        initializer_factor (`float`, *optional*, defaults to 1):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
            Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the
            `"gated-gelu"` feed forward projection. Original T5 uses `"relu"`.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
    Zt5Zpast_key_valuesd_model	num_heads
num_layersd_kv)Zhidden_sizeZnum_attention_headsZnum_hidden_layersZhead_dim}     @         N          皙?ư>      ?reluTr              c                    s   || _ || _|| _|| _|| _|d ur|n| j| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _| jd}|d | _|d dk| _t|dkrR|d dksXt|dkr`td| d|d	krgd
| _t jd|||d| d S )N-r   Zgatedr      z`feed_forward_proj`: z is not a valid activation function of the dense layer. Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. 'gated-gelu' or 'relu'z
gated-geluZgelu_new)pad_token_ideos_token_idis_encoder_decoder )
vocab_sizer   r   d_ffr
   num_decoder_layersr	   relative_attention_num_bucketsrelative_attention_max_distancedropout_rateclassifier_dropoutlayer_norm_epsiloninitializer_factorfeed_forward_proj	use_cachesplitZdense_act_fnZis_gated_actlen
ValueErrorsuper__init__)selfr!   r   r   r"   r
   r#   r	   r$   r%   r&   r(   r)   r*   r   r+   r   r   r'   kwargsZact_info	__class__r    V/var/www/auris/lib/python3.10/site-packages/transformers/models/t5/configuration_t5.pyr0   S   s@   
$

zT5Config.__init__)r   r   r   r   r   Nr   r   r   r   r   r   r   TTr   r   r   )	__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferenceZattribute_mapr0   __classcell__r    r    r3   r5   r      s8    .	r   c                   @   s@   e Zd Zedeeeeef f fddZedefddZdS )T5OnnxConfigreturnc                 C   sx   ddddddd}| j r"d|d d< ddi|d	< dd
d|d< nddd|d	< ddd|d< | j r:| j|dd |S )NbatchZencoder_sequence)r   r   )Z	input_idsattention_maskz past_encoder_sequence + sequencer>   r   r   Zdecoder_input_idsz past_decoder_sequence + sequenceZdecoder_attention_maskZdecoder_sequenceinputs)	direction)Zuse_pastZfill_with_past_key_values_)r1   Zcommon_inputsr    r    r5   r?      s   zT5OnnxConfig.inputsc                 C   s   dS )N   r    )r1   r    r    r5   default_onnx_opset   s   zT5OnnxConfig.default_onnx_opsetN)	r6   r7   r8   propertyr   strintr?   rB   r    r    r    r5   r;      s
     r;   N)r9   typingr   Zconfiguration_utilsr   Zonnxr   utilsr   Z
get_loggerr6   loggerr   r;   __all__r    r    r    r5   <module>   s   
w