o
    Zh$                     @   s^   d dl mZ d dlmZ ddlmZmZ eeZ	G dd deZ
G dd deZddgZd	S )
   )PretrainedConfig)logging   )CONFIG_MAPPING
AutoConfigc                       s@   e Zd ZdZdZdZ								
				d fdd	Z  ZS )SmolVLMVisionConfiga  
    This is the configuration class to store the configuration of a [`SmolVLMVisionModel`]. It is used to instantiate a
    SmolVLM vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint
    [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) used in SmolVLM
    [HuggingFaceTB/SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 1152):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

    Example:

    ```python
    >>> from transformers.models.smolvlm.modeling_smolvlm import SmolVLMVisionTransformer
    >>> from transformers.models.smolvlm.configuration_smolvlm import SmolVLMVisionConfig

    >>> # Initializing a SmolVLMVisionConfig with google/siglip-so400m-patch14-384 style configuration
    >>> configuration = SmolVLMVisionConfig()

    >>> # Initializing a SmolVLMVisionTransformer (with random weights) from the google/siglip-so400m-patch14-384 style configuration
    >>> model = SmolVLMVisionTransformer(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zsmolvlm_visionvision_config           r          gelu_pytorch_tanhư>        {Gz?c                    sX   t  jdi | || _|| _|| _|| _|| _|| _|| _|
| _	|	| _
|| _|| _d S )N )super__init__hidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_channels
patch_size
image_sizeattention_dropoutlayer_norm_eps
hidden_actinitializer_range)selfr   r   r   r   r   r   r   r   r   r   r    kwargs	__class__r   `/var/www/auris/lib/python3.10/site-packages/transformers/models/smolvlm/configuration_smolvlm.pyr   U   s   
zSmolVLMVisionConfig.__init__)r	   r
   r   r   r   r   r   r   r   r   r   )__name__
__module____qualname____doc__
model_typeZbase_config_keyr   __classcell__r   r   r#   r%   r      s     3r   c                       s>   e Zd ZdZdZeedZ								d fd
d	Z  Z	S )SmolVLMConfiga  
    This is the configuration class to store the configuration of a [`SmolVLMModel`]. It is used to instantiate a
    SmolVLM model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the model of the SmolVLM
    [HuggingFaceTB/SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should cache the key/value pairs of the attention mechanism. Only
            relevant if `config.is_decoder=True`.
        image_token_id (`int`, *optional*, defaults to 128257):
            The id of the "image" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to tie the word embeddings with the token embeddings.
        vision_config (`IdeficsVisionConfig` or `dict`, *optional*, defaults to `IdeficsVisionConfig`):
            Custom vision config or dict for the vision tower
        text_config (`PretrainedConfig` or `dict`, *optional*, defaults to `LlamaConfig`):
            Custom text config or dict for the text model
        scale_factor (`int`, *optional*, defaults to 2):
            The scale factor for the image encoder.
        pad_token_id (`int`, *optional*, defaults to 128002):
            The id of the padding token.

    Example:
    ```python
    >>> from transformers import SmolVLMModel, SmolVLMConfig
    >>> # Initializing configuration
    >>> configuration = SmolVLMConfig()
    >>> # Initializing a model from the configuration
    >>> model = SmolVLMModel(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zsmolvlm)text_configr   T FNr    c           	         s   || _ || _|| _|d u rt | _td nt|tr%td	i || _nt|tr-|| _t|trJd|v r:|d nd|d< t	|d  d	i |}n|d u r\td t	d d|dd}|| _
|| _t jd	i |||d d S )
Nz2vision_config is None, using default vision configr*   llamaz.text_config is None, using default text configgh㈵>F)Zrms_norm_epspad_token_idtie_word_embeddings)r1   r2   r   )image_token_id	use_cacher2   r   r   loggerinfo
isinstancedictr   r-   scale_factorr   r   )	r!   r4   r3   r2   r   r-   r9   r1   r"   r#   r   r%   r      s.   



 zSmolVLMConfig.__init__)Tr.   FNNr   r/   )
r&   r'   r(   r)   r*   r   r   Zsub_configsr   r+   r   r   r#   r%   r,   s   s    %
r,   N)Zconfiguration_utilsr   utilsr   autor   r   Z
get_loggerr&   r5   r   r,   __all__r   r   r   r%   <module>   s   
UQ