o
    Zh                     @   s   d Z ddlmZmZmZ ddlmZ ddlmZ ddl	m
Z
mZmZmZ ddlmZmZ G dd	 d	e
d
dZG dd ded
dZG dd deZdgZdS )z)
Image/Text processor class for SigLIP2.
    )ListOptionalUnion   )BatchFeature)
ImageInput)ImagesKwargsProcessingKwargsProcessorMixinUnpack)PreTokenizedInput	TextInputc                   @   s&   e Zd ZU ee ed< ee ed< dS )Siglip2ImagesKwargsmax_num_patches
patch_sizeN)__name__
__module____qualname__r   int__annotations__ r   r   ]/var/www/auris/lib/python3.10/site-packages/transformers/models/siglip2/processing_siglip2.pyr      s   
 r   F)totalc                   @   s.   e Zd ZU eed< dddddddd	Zd
S )Siglip2ProcessorKwargsimages_kwargs
max_lengthT@   )paddingZ
truncationr         )r   r   )text_kwargsr   N)r   r   r   r   r   	_defaultsr   r   r   r   r       s   
 
r   c                       s   e Zd ZdZddgZdZdZ fddZ				dd	ee	e
ee
 eee
  f  d
ee	edee ed f  dee defddZdd Zdd Zedd Z  ZS )Siglip2Processora!  
    Constructs a Siglip2 processor which wraps a Siglip2 image processor and a Gemma tokenizer into a single processor.

    [`Siglip2Processor`] offers all the functionalities of [`Siglip2ImageProcessor`] and [`GemmaTokenizerFast`]. See the
    [`~Siglip2Processor.__call__`] and [`~Siglip2Processor.decode`] for more information.

    Args:
        image_processor ([`Siglip2ImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`GemmaTokenizerFast`]):
            The tokenizer is a required input.
    image_processor	tokenizerZAutoImageProcessorZAutoTokenizerc                    s   t  || d S N)super__init__)selfr#   r$   	__class__r   r   r'   C   s   zSiglip2Processor.__init__Nimagestextr   kwargsreturnc           
      K   s   | j tfd| jji|}|du r|du rtd|dur(| j|fi |d }|dur7| j|fi |d }|durF|durF|| |S |durL|S |d d }	ttd	i ||	dS )
a  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to GemmaTokenizerFast's [`~GemmaTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` argument to
        Siglip2ImageProcessor's [`~Siglip2ImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
        of the above two methods for more information.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `max_length`):
                Select a strategy to pad the returned sequences (according to the model's padding side and padding
                index) among:
                - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
                  acceptable input length for the model if that argument is not provided.
                - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
                  sequence if provided).
                - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
                  lengths).
            max_length (`int`, *optional*, defaults to 64):
                Maximum length of the returned list and optionally padding length (see above).
            truncation (`bool`, *optional*, defaults to `True`):
                Activates truncation to cut input sequences longer than `max_length` to `max_length`.
            return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to `'pt'`):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
            - **pixel_attention_mask** -- Attention mask for the pixel values. Returned when `images` is not `None`.
            - **spatial_shapes** -- The number of horizontal and vertical patches per image.
              Returned when `images` is not `None`.
        Ztokenizer_init_kwargsNz?You have to specify either text or images. Both cannot be none.r    r   Zcommon_kwargsreturn_tensors)dataZtensor_typer   )	Z_merge_kwargsr   r$   Zinit_kwargs
ValueErrorr#   updater   dict)
r(   r+   r,   ZaudioZvideosr-   Zoutput_kwargsencodingZimage_featuresr/   r   r   r   __call__F   s(   8
zSiglip2Processor.__call__c                 O      | j j|i |S )z
        This method forwards all its arguments to Siglip2Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r$   decoder(   argsr-   r   r   r   r7         zSiglip2Processor.decodec                 O   r6   )z
        This method forwards all its arguments to Siglip2Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r$   batch_decoder8   r   r   r   r;      r:   zSiglip2Processor.batch_decodec                 C   s"   | j j}| jj}tt|| S r%   )r$   model_input_namesr#   listr3   fromkeys)r(   Ztokenizer_input_namesZimage_processor_input_namesr   r   r   r<      s   z"Siglip2Processor.model_input_names)NNNN)r   r   r   __doc__
attributesZimage_processor_classZtokenizer_classr'   r   r   r   r   r   r   r   r   r5   r7   r;   propertyr<   __classcell__r   r   r)   r   r"   0   s.    
Pr"   N)r?   typingr   r   r   Zfeature_extraction_utilsr   Zimage_utilsr   Zprocessing_utilsr   r	   r
   r   Ztokenization_utils_baser   r   r   r   r"   __all__r   r   r   r   <module>   s   
{