o
    Zh/                     @   sb   d Z ddlmZ ddlmZ eeZG dd deZG dd deZ	G dd	 d	eZ
g d
ZdS )zSiglip model configuration   )PretrainedConfig)loggingc                       sD   e Zd ZdZdZdZ									
					d fdd	Z  ZS )SiglipTextConfiga  
    This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a
    Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip
    [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`SiglipModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 64):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        pad_token_id (`int`, *optional*, defaults to 1):
            The id of the padding token in the vocabulary.
        bos_token_id (`int`, *optional*, defaults to 49406):
            The id of the beginning-of-sequence token in the vocabulary.
        eos_token_id (`int`, *optional*, defaults to 49407):
            The id of the end-of-sequence token in the vocabulary.
        projection_size (`int`, *optional*, defaults to `hidden_size`):
            The size of the projection head.

    Example:

    ```python
    >>> from transformers import SiglipTextConfig, SiglipTextModel

    >>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration
    >>> configuration = SiglipTextConfig()

    >>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration
    >>> model = SiglipTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zsiglip_text_modeltext_config }           @   gelu_pytorch_tanhư>               Nc                    sl   t  jd|
||d| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|d ur1|| _d S || _d S )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsmax_position_embeddingslayer_norm_eps
hidden_actattention_dropoutprojection_size)selfr   r   r   r   r   r   r   r   r   r   r   r   r    kwargs	__class__r   ^/var/www/auris/lib/python3.10/site-packages/transformers/models/siglip/configuration_siglip.pyr   S   s   zSiglipTextConfig.__init__)r   r   r   r	   r	   r
   r   r   r   r   r   r   N__name__
__module____qualname____doc__
model_typeZbase_config_keyr   __classcell__r   r   r#   r%   r      s$    7r   c                       s>   e Zd ZdZdZdZ									
		d fdd	Z  ZS )SiglipVisionConfiga'
  
    This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
    Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
    [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    Example:

    ```python
    >>> from transformers import SiglipVisionConfig, SiglipVisionModel

    >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
    >>> configuration = SiglipVisionConfig()

    >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
    >>> model = SiglipVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zsiglip_vision_modelvision_configr   r   r	   r         r   r   r   c                    sR   t  jdi | || _|| _|| _|| _|| _|| _|| _|
| _	|	| _
|| _d S )Nr   )r   r   r   r   r   r   num_channels
patch_size
image_sizer   r   r   )r!   r   r   r   r   r1   r3   r2   r   r   r   r"   r#   r   r%   r      s   
zSiglipVisionConfig.__init__)
r   r   r	   r	   r   r/   r0   r   r   r   r&   r   r   r#   r%   r-   t   s    /r-   c                       sF   e Zd ZdZdZeedZd fdd	Ze	dedefd	d
Z
  ZS )SiglipConfigaC  
    [`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to
    instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip
    [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`SiglipTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import SiglipConfig, SiglipModel

    >>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration
    >>> configuration = SiglipConfig()

    >>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration
    >>> model = SiglipModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig
    >>> from transformers import SiglipTextConfig, SiglipVisionConfig

    >>> # Initializing a SiglipText and SiglipVision configuration
    >>> config_text = SiglipTextConfig()
    >>> config_vision = SiglipVisionConfig()

    >>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision)
    ```Zsiglipr   r.   Nc                    sh   t  jdi | |d u ri }td |d u ri }td tdi || _tdi || _d| _d S )NzQ`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.zU`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.g      ?r   )	r   r   loggerinfor   r   r-   r.   Zinitializer_factor)r!   r   r.   r"   r#   r   r%   r      s   


zSiglipConfig.__init__r   r.   c                 K   s   | d|  |  d|S )z
        Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision
        model configuration.

        Returns:
            [`SiglipConfig`]: An instance of a configuration object
        r5   Nr   )to_dict)clsr   r.   r"   r   r   r%   from_text_vision_configs   s   
z%SiglipConfig.from_text_vision_configs)NN)r'   r(   r)   r*   r+   r   r-   Zsub_configsr   classmethodr:   r,   r   r   r#   r%   r4      s    )
r4   )r4   r   r-   N)r*   Zconfiguration_utilsr   utilsr   Z
get_loggerr'   r6   r   r-   r4   __all__r   r   r   r%   <module>   s   
\OJ