o
    Zh                     @   s   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ dd	lmZmZ eeZG d
d deeZG dd de
ZddgZdS )zResNet model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indicesc                
       sJ   e Zd ZdZdZddgZddg dg ddd	d
d
ddf
 fdd	Z  ZS )ResNetConfiga  
    This is the configuration class to store the configuration of a [`ResNetModel`]. It is used to instantiate an
    ResNet model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the ResNet
    [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        embedding_size (`int`, *optional*, defaults to 64):
            Dimensionality (hidden size) for the embedding layer.
        hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
            Dimensionality (hidden size) at each stage.
        depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
            Depth (number of layers) for each stage.
        layer_type (`str`, *optional*, defaults to `"bottleneck"`):
            The layer to use, it can be either `"basic"` (used for smaller models, like resnet-18 or resnet-34) or
            `"bottleneck"` (used for larger models like resnet-50 and above).
        hidden_act (`str`, *optional*, defaults to `"relu"`):
            The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
            are supported.
        downsample_in_first_stage (`bool`, *optional*, defaults to `False`):
            If `True`, the first stage will downsample the inputs using a `stride` of 2.
        downsample_in_bottleneck (`bool`, *optional*, defaults to `False`):
            If `True`, the first conv 1x1 in ResNetBottleNeckLayer will downsample the inputs using a `stride` of 2.
        out_features (`List[str]`, *optional*):
            If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
            (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
            corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
            same order as defined in the `stage_names` attribute.
        out_indices (`List[int]`, *optional*):
            If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
            many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
            If unset and `out_features` is unset, will default to the last stage. Must be in the
            same order as defined in the `stage_names` attribute.

    Example:
    ```python
    >>> from transformers import ResNetConfig, ResNetModel

    >>> # Initializing a ResNet resnet-50 style configuration
    >>> configuration = ResNetConfig()

    >>> # Initializing a model (with random weights) from the resnet-50 style configuration
    >>> model = ResNetModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    ZresnetbasicZ
bottleneckr   @   )   i   i   i   )r         r   ZreluFNc                    s   t  jd	i | || jvrtd| dd| j || _|| _|| _|| _|| _	|| _
|| _|| _dgdd tdt|d D  | _t|	|
| jd\| _| _d S )
Nzlayer_type=z is not one of ,stemc                 S   s   g | ]}d | qS )Zstage ).0idxr   r   ^/var/www/auris/lib/python3.10/site-packages/transformers/models/resnet/configuration_resnet.py
<listcomp>r   s    z)ResNetConfig.__init__.<locals>.<listcomp>   )out_featuresout_indicesstage_namesr   )super__init__layer_types
ValueErrorjoinnum_channelsembedding_sizehidden_sizesdepths
layer_type
hidden_actdownsample_in_first_stagedownsample_in_bottleneckrangelenr   r   Z_out_featuresZ_out_indices)selfr"   r#   r$   r%   r&   r'   r(   r)   r   r   kwargs	__class__r   r   r   Y   s   
$zResNetConfig.__init__)__name__
__module____qualname____doc__Z
model_typer   r   __classcell__r   r   r.   r   r      s    6r   c                   @   sJ   e Zd ZedZedeeee	ef f fddZ
edefddZdS )ResNetOnnxConfigz1.11returnc                 C   s   t ddddddfgS )NZpixel_valuesbatchr"   heightwidth)r   r      r   r   r,   r   r   r   inputs{   s   zResNetOnnxConfig.inputsc                 C   s   dS )NgMbP?r   r;   r   r   r   atol_for_validation   s   z$ResNetOnnxConfig.atol_for_validationN)r0   r1   r2   r   parseZtorch_onnx_minimum_versionpropertyr   strintr<   floatr=   r   r   r   r   r5   x   s    
 r5   N)r3   collectionsr   typingr   	packagingr   Zconfiguration_utilsr   Zonnxr   utilsr	   Zutils.backbone_utilsr
   r   Z
get_loggerr0   loggerr   r5   __all__r   r   r   r   <module>   s   
Y