o
    Zh                     @   s  d dl mZmZmZmZ d dlZd dlmZ ddlmZ ddl	m
Z
mZmZmZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZmZmZmZmZ ddlmZm Z  ddl!m"Z"m#Z# ddl$m%Z% ddl&m'Z'm(Z(m)Z)m*Z*m+Z+ ddl,m-Z- e* rd dl.m/Z/ ddl0m1Z1 e+2e3Z4edG dd dej5Z6G dd dej5Z7dd Z8dDddZ9dej:de;d ej:fd!d"Z<	#dEd$ej5d%ej:d&ej:d'ej:d(eej: d)e=d*e=fd+d,Z>G d-d. d.ej5Z?G d/d0 d0eZ@e(G d1d2 d2e#ZAG d3d4 d4ej5ZBe(G d5d6 d6eAZCG d7d8 d8ee'ZDe(G d9d: d:eAeZEe(d;d<G d=d> d>eAZFe(G d?d@ d@eAZGe(G dAdB dBeAZHg dCZIdS )F    )CallableOptionalTupleUnionN)nn   )ACT2FN)CacheDynamicCacheSlidingWindowCacheStaticCache)GenerationMixin)use_kernel_forward_from_hub)AttentionMaskConverter)FlashAttentionKwargs)GradientCheckpointingLayer)BaseModelOutputWithPastCausalLMOutputWithPastQuestionAnsweringModelOutput SequenceClassifierOutputWithPastTokenClassifierOutput)ROPE_INIT_FUNCTIONSdynamic_rope_update)ALL_ATTENTION_FUNCTIONSPreTrainedModel)Unpack)
LossKwargsauto_docstringcan_return_tupleis_torch_flex_attn_availablelogging   )Qwen3Config)	BlockMask)make_flex_block_causal_maskZRMSNormc                       s.   e Zd Zd fdd	Zdd Zdd Z  ZS )	Qwen3RMSNormư>c                    s&   t    tt|| _|| _dS )z;
        Qwen3RMSNorm is equivalent to T5LayerNorm
        N)super__init__r   	ParametertorchZonesweightvariance_epsilon)selfhidden_sizeeps	__class__ W/var/www/auris/lib/python3.10/site-packages/transformers/models/qwen3/modeling_qwen3.pyr(   ;   s   

zQwen3RMSNorm.__init__c                 C   sJ   |j }|tj}|djddd}|t|| j  }| j|| S )N   T)Zkeepdim)	dtypetor*   float32powmeanZrsqrtr,   r+   )r-   hidden_statesZinput_dtypeZvariancer2   r2   r3   forwardC   s
   zQwen3RMSNorm.forwardc                 C   s   t | jj d| j S )Nz, eps=)tupler+   shaper,   r-   r2   r2   r3   
extra_reprJ   s   zQwen3RMSNorm.extra_repr)r&   )__name__
__module____qualname__r(   r<   r@   __classcell__r2   r2   r0   r3   r%   9   s    r%   c                       s$   e Zd Z fddZdd Z  ZS )Qwen3MLPc                    sr   t    || _|j| _|j| _tj| j| jdd| _tj| j| jdd| _tj| j| jdd| _	t
|j | _d S NFbias)r'   r(   configr.   Zintermediate_sizer   Linear	gate_projup_proj	down_projr   Z
hidden_actact_fnr-   rI   r0   r2   r3   r(   O   s   
zQwen3MLP.__init__c                 C   s$   |  | | || | }|S N)rM   rN   rK   rL   )r-   xrM   r2   r2   r3   r<   Y   s    zQwen3MLP.forward)rA   rB   rC   r(   r<   rD   r2   r2   r0   r3   rE   N   s    
rE   c                 C   sH   | dd| j d d f }| d| j d d df }tj| |fddS )z*Rotates half the hidden dims of the input..Nr5   r4   dim)r>   r*   cat)rQ   x1Zx2r2   r2   r3   rotate_half^   s   rV   c                 C   sD   | |}| |}| | t| |  }|| t||  }||fS )a  Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    )	unsqueezerV   )qkcossinposition_idsZunsqueeze_dimZq_embedZk_embedr2   r2   r3   apply_rotary_pos_embe   s
   

r]   r;   n_repreturnc                 C   s^   | j \}}}}|dkr| S | dddddddddf |||||} | ||| ||S )z
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    r!   N)r>   expandreshape)r;   r^   batchnum_key_value_headsslenhead_dimr2   r2   r3   	repeat_kv   s
   0rf           modulequerykeyvalueattention_maskscalingdropoutc                 K   s   t || j}t || j}	t||dd| }
|d ur3|d d d d d d d |jd f }|
| }
tjj|
dtj	d
|j}
tjj|
|| jd}
t|
|	}|dd }||
fS )Nr4   r   r5   )rS   r6   )ptrainingr!   )rf   num_key_value_groupsr*   matmul	transposer>   r   Z
functionalZsoftmaxr8   r7   r6   rn   rq   
contiguous)rh   ri   rj   rk   rl   rm   rn   kwargs
key_statesvalue_statesattn_weightscausal_maskattn_outputr2   r2   r3   eager_attention_forward   s   
&r|   c                       s   e Zd ZdZdedef fddZ		ddejde	ejejf d	e
ej d
e
e de
ej dee de	eje
ej e
e	ej  f fddZ  ZS )Qwen3Attentionz=Multi-headed attention from 'Attention Is All You Need' paperrI   	layer_idxc                    s.  t    || _|| _t|d|j|j | _|j|j | _	| jd | _
|j| _d| _tj|j|j| j |jd| _tj|j|j| j |jd| _tj|j|j| j |jd| _tj|j| j |j|jd| _t| j|jd| _t| j|jd| _|j| _| jjrt| jdd d ur| j| jjksd | _d S d S )Nre   g      TrG   r/   sliding_window)r'   r(   rI   r~   getattrr.   Znum_attention_headsre   rc   rr   rm   attention_dropoutZ	is_causalr   rJ   Zattention_biasq_projk_projv_projo_projr%   rms_norm_epsq_normk_normr   use_sliding_windowZmax_window_layersr-   rI   r~   r0   r2   r3   r(      s:   

zQwen3Attention.__init__Nr;   position_embeddingsrl   past_key_valuecache_positionrv   r_   c                 K   sX  |j d d }g |d| jR }| | ||dd}	| | ||dd}
| ||dd}|\}}t	|	|
||\}	}
|d ur]|||d}|
|
|| j|\}
}t}| jjdkr}| jjdkrw|ddrwtd	 nt| jj }|| |	|
||f| jsd
n| j| j| jd|\}}|jg |dR   }| |}||fS )Nr5   r!   r4   )r[   rZ   r   eagersdpaoutput_attentionsFz`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.rg   )rn   rm   r   )r>   re   r   r   viewrt   r   r   r   r]   updater~   r|   rI   _attn_implementationgetloggerwarning_oncer   rq   r   rm   r   ra   ru   r   )r-   r;   r   rl   r   r   rv   Zinput_shapeZhidden_shapeZquery_statesrw   rx   rZ   r[   Zcache_kwargsZattention_interfacer{   ry   r2   r2   r3   r<      sB   		

zQwen3Attention.forward)NN)rA   rB   rC   __doc__r"   intr(   r*   Tensorr   r   r	   
LongTensorr   r   r<   rD   r2   r2   r0   r3   r}      s(    %r}   c                       s   e Zd Zdedef fddZ							ddejdeej d	eej	 d
ee
 dee dee deej	 deeejejf  dee deejeeejejf  f fddZ  ZS )Qwen3DecoderLayerrI   r~   c                    s~   t    |j| _t||d| _t|| _t|j|jd| _	t|j|jd| _
|jr;|jdkr=td|j d d S d S d S )N)rI   r~   r   flash_attention_2z=Sliding Window Attention is enabled but not implemented for `z)`; unexpected results may be encountered.)r'   r(   r.   r}   	self_attnrE   mlpr%   r   input_layernormpost_attention_layernormr   r   r   r   r   r0   r2   r3   r(      s   


zQwen3DecoderLayer.__init__NFr;   rl   r\   r   r   	use_cacher   r   rv   r_   c	                 K   st   |}
|  |}| jd||||||||d|	\}}|
| }|}
| |}| |}|
| }|f}|r8||f7 }|S )N)r;   rl   r\   r   r   r   r   r   r2   )r   r   r   r   )r-   r;   rl   r\   r   r   r   r   r   rv   ZresidualZself_attn_weightsoutputsr2   r2   r3   r<     s.   
	



zQwen3DecoderLayer.forward)NNNFFNN)rA   rB   rC   r"   r   r(   r*   r   r   r   r	   boolr   r   r   FloatTensorr<   rD   r2   r2   r0   r3   r      s<    	
r   c                   @   sH   e Zd ZeZdZdZdgZdgZdZ	dZ
dZdZdZdZdZdd ZdS )Qwen3PreTrainedModelmodelTr   past_key_valuesc                 C   s   | j j}t|tjr"|jjjd|d |jd ur |jj	  d S d S t|tj
rC|jjjd|d |jd urA|jj|j 	  d S d S t|trQ|jjd d S d S )Nrg   )r:   stdg      ?)rI   Zinitializer_range
isinstancer   rJ   r+   dataZnormal_rH   Zzero_	Embeddingpadding_idxr%   Zfill_)r-   rh   r   r2   r2   r3   _init_weightsE  s   


z"Qwen3PreTrainedModel._init_weightsN)rA   rB   rC   r"   Zconfig_classbase_model_prefixZsupports_gradient_checkpointingZ_no_split_modulesZ_skip_keys_device_placementZ_supports_flash_attn_2Z_supports_sdpaZ_supports_flex_attnZ_supports_cache_classZ_supports_quantized_cacheZ_supports_static_cacheZ_supports_attention_backendr   r2   r2   r2   r3   r   6  s    r   c                       s8   e Zd Zddef fddZe edd Z  Z	S )Qwen3RotaryEmbeddingNrI   c                    s   t    t|dr|jd ur|jd|jd| _nd| _|j| _|j| _|| _	t
| j | _| | j	|\}| _| jd|dd | j| _d S )Nrope_scaling	rope_typetypedefaultinv_freqF)
persistent)r'   r(   hasattrr   r   r   Zmax_position_embeddingsZmax_seq_len_cachedZoriginal_max_seq_lenrI   r   Zrope_init_fnattention_scalingZregister_bufferr   Zoriginal_inv_freq)r-   rI   devicer   r0   r2   r3   r(   T  s   
zQwen3RotaryEmbedding.__init__c           
      C   s   | j d d d d f  |jd dd|j}|d d d d d f  }t|jjtr6|jjdkr6|jjnd}t	j
|dd+ | |  dd}t	j||fdd	}| | j }| | j }	W d    n1 smw   Y  |j|jd
|	j|jd
fS )Nr   r5   r!   ZmpscpuF)device_typeenabledr4   rR   )r6   )r   floatr`   r>   r7   r   r   r   strr*   Zautocastrt   rT   rZ   r   r[   r6   )
r-   rQ   r\   Zinv_freq_expandedZposition_ids_expandedr   ZfreqsZembrZ   r[   r2   r2   r3   r<   e  s   0&zQwen3RotaryEmbedding.forwardrP   )
rA   rB   rC   r"   r(   r*   Zno_gradr   r<   rD   r2   r2   r0   r3   r   S  s
    r   c                       s  e Zd Zdef fddZdd Zdd Zee									d!d	e	e
j d
e	e
j de	e
j de	e de	e
j de	e de	e de	e de	e
j dee defddZ	d"d
ee
jdf de
jde
jdedef
ddZed
e
jdedede
jde
jdededefdd Z  ZS )#
Qwen3ModelrI   c                    s   t     j| _ j| _t j j| j| _t	 fddt
 jD | _t j jd| _t d| _d| _|   d S )Nc                    s   g | ]}t  |qS r2   )r   ).0r~   rI   r2   r3   
<listcomp>~  s    z'Qwen3Model.__init__.<locals>.<listcomp>r   r   F)r'   r(   pad_token_idr   
vocab_sizer   r   r.   embed_tokensZ
ModuleListrangenum_hidden_layerslayersr%   r   normr   
rotary_embgradient_checkpointing	post_initrO   r0   r   r3   r(   w  s   zQwen3Model.__init__c                 C      | j S rP   r   r?   r2   r2   r3   get_input_embeddings     zQwen3Model.get_input_embeddingsc                 C   
   || _ d S rP   r   r-   rk   r2   r2   r3   set_input_embeddings     
zQwen3Model.set_input_embeddingsN	input_idsrl   r\   r   inputs_embedsr   r   output_hidden_statesr   flash_attn_kwargsr_   c
                 K   s  |d ur|n| j j}|d ur|n| j j}|d ur|n| j j}|d u |d uA r*td| jr9| jr9|r9td d}t	|t
d tfsFtd|d u rO| |}|rX|d u rXt }|	d u rt|d urd| nd}tj|||jd  |jd}	|d u r}|	d}| |||	||}|}| ||}|rdnd }|rdnd }| jd | j j D ]&}|r||f7 }||f||||||	|d	|
}|d }|r||d f7 }q| |}|r||f7 }t||r|nd ||d
S )Nz:You must specify exactly one of input_ids or inputs_embedszX`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.FzBThe `past_key_values` should be either a `Cache` object or `None`.r   r!   r   r2   )rl   r\   r   r   r   r   r   )last_hidden_stater   r;   
attentions)rI   r   r   r   
ValueErrorr   rq   r   r   r   r   r	   r   r
   get_seq_lengthr*   aranger>   r   rW   _update_causal_maskr   r   r   r   r   )r-   r   rl   r\   r   r   r   r   r   r   r   past_seen_tokensrz   r;   r   Zall_hidden_statesZall_self_attnsZdecoder_layerZlayer_outputsr2   r2   r3   r<     sx   



	


zQwen3Model.forwardFr#   input_tensorc              
   C   s  | j jdkr2|d ur&|d ur&|d d df   | d k}|r&td|d ur0d|v r0|S d S | j jdkrDt|tjrBt	|}|S |d urL|
 nd}t|t}t|t}	| j jdkrs|ss|	ss|sstj|||| j j| jdrsd S |j}
t|
j}|jd	 }|	s|r| }nt|tjr|jd n|| d	 }| j||||
||jd | j |d
}| j jdkr|d ur|jjdv r|st||}|S )Nr   r5   r   zYou are attempting to perform batched generation with padding_side='right' this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to  call `tokenizer.padding_side  = 'left'` before tokenizing the input. rg   Zflex_attentionr   )r   Zpast_key_values_lengthr   Zis_trainingr!   )sequence_lengthtarget_lengthr6   r   
batch_sizerI   r   )cudaZxpuZnpu)rI   r   sumitemsizer   r   r*   r   r$   r   r   r   r   Z_ignore_causal_mask_sdpar   rq   r6   finfominr>   Zget_max_cache_shape5_prepare_4d_causal_attention_mask_with_cache_positionr   r   Z_unmask_unattended)r-   rl   r   r   r   r   Zis_padding_rightr   Zusing_static_cacheZusing_sliding_window_cacher6   	min_dtyper   r   rz   r2   r2   r3   r     st   $





zQwen3Model._update_causal_maskr   r   r6   r   c                 C   s  | dur|   dkr| }|S t|j}	tj||f|	||jd}tj||jd|ddk}
| }t	|ddr\|j
dur\t|trF||kr\tj||jd|dd|j
 k}|
| ||
9 }|ddddddf |ddd}| dur| }| jd |kr| ddd|f } | jd }|ddddddd|f | ddddddf |j }|d	k}|ddddddd|f ||	|ddddddd|f< |S )
a  
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

        Args:
            attention_mask (`torch.Tensor`):
                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
            sequence_length (`int`):
                The sequence length being processed.
            target_length (`int`):
                The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
            dtype (`torch.dtype`):
                The dtype to use for the 4D attention mask.
            cache_position (`torch.Tensor`):
                Indices depicting the position of the input sequence tokens in the sequence.
            batch_size (`torch.Tensor`):
                Batch size.
            config (`Qwen3Config`):
                The model's configuration class
            past_key_values (`Cache`):
                The cache class that is being used currently to generate
        N   )Z
fill_valuer6   r   r   r5   r!   r   Tr   )rS   r*   r   r   fullr   r   ra   Zget_text_configr   r   r   r   Zbitwise_or_r`   cloner>   r7   Zmasked_fill)rl   r   r   r6   r   r   rI   r   rz   r   Zdiagonal_attend_maskZtext_configZsliding_attend_maskZmask_lengthZpadding_maskr2   r2   r3   r   C  s@   ! 
$
6  z@Qwen3Model._prepare_4d_causal_attention_mask_with_cache_position	NNNNNNNNN)F)rA   rB   rC   r"   r(   r   r   r   r   r   r*   r   r   r	   r   r   r   r   r   r<   r   r   staticmethodr   r6   r   rD   r2   r2   r0   r3   r   u  s    	
d
Vr   c                   @   s   e Zd ZdS )KwargsForCausalLMN)rA   rB   rC   r2   r2   r2   r3   r     s    r   c                       s
  e Zd ZdgZddiZddgdgfiZ fddZdd	 Zd
d Zdd Z	dd Z
dd Zdd Zee											d%deej deej deej dee deej deej dee dee dee deej d eeejf d!ee d"efd#d$Z  ZS )&Qwen3ForCausalLMzlm_head.weightlm_headZcolwise_repr;   logitsc                    s@   t  | t|| _|j| _tj|j|jdd| _| 	  d S rF   )
r'   r(   r   r   r   r   rJ   r.   r   r   rO   r0   r2   r3   r(     s
   
zQwen3ForCausalLM.__init__c                 C      | j jS rP   r   r   r?   r2   r2   r3   r        z%Qwen3ForCausalLM.get_input_embeddingsc                 C      || j _d S rP   r   r   r2   r2   r3   r        z%Qwen3ForCausalLM.set_input_embeddingsc                 C   r   rP   r   r?   r2   r2   r3   get_output_embeddings  r   z&Qwen3ForCausalLM.get_output_embeddingsc                 C   r   rP   r   )r-   Znew_embeddingsr2   r2   r3   set_output_embeddings  r   z&Qwen3ForCausalLM.set_output_embeddingsc                 C   r   rP   r   )r-   decoderr2   r2   r3   set_decoder  r   zQwen3ForCausalLM.set_decoderc                 C   r   rP   r   r?   r2   r2   r3   get_decoder  r   zQwen3ForCausalLM.get_decoderNr   r   rl   r\   r   r   labelsr   r   r   r   logits_to_keeprv   r_   c                 K   s   |dur|n| j j}|	dur|	n| j j}	| jd||||||||	|
d	|}|j}t|tr4t| dn|}| |dd|ddf }d}|durX| j	d||| j j
d|}t|||j|j|jdS )a^  
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from transformers import AutoTokenizer, Qwen3ForCausalLM

        >>> model = Qwen3ForCausalLM.from_pretrained("Qwen/Qwen3-8B")
        >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```N)	r   rl   r\   r   r   r   r   r   r   )r   r  r   lossr   r   r;   r   r2   )rI   r   r   r   r   r   r   slicer   loss_functionr   r   r   r;   r   )r-   r   rl   r\   r   r   r  r   r   r   r   r  rv   r   r;   Zslice_indicesr   r  r2   r2   r3   r<     s:   '
zQwen3ForCausalLM.forward)NNNNNNNNNNr   )rA   rB   rC   Z_tied_weights_keysZ_tp_planZ_pp_planr(   r   r   r   r   r   r  r   r   r   r*   r   r   r	   r   r   r   r   r   r   r   r<   rD   r2   r2   r0   r3   r     sf    		
r   a  
    The Qwen3 Model transformer with a sequence classification head on top (linear layer).

    [`Qwen3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    )Zcustom_introc                          e Zd Z fddZdd Zdd Zee									ddee	j
 d	ee	j d
ee	j
 dee dee	j dee	j
 dee dee dee defddZ  ZS )Qwen3ForSequenceClassificationc                    s@   t  | |j| _t|| _tj|j| jdd| _| 	  d S rF   )
r'   r(   
num_labelsr   r   r   rJ   r.   scorer   rO   r0   r2   r3   r(     s
   
z'Qwen3ForSequenceClassification.__init__c                 C   r   rP   r   r?   r2   r2   r3   r     r   z3Qwen3ForSequenceClassification.get_input_embeddingsc                 C   r   rP   r   r   r2   r2   r3   r     r   z3Qwen3ForSequenceClassification.set_input_embeddingsNr   rl   r\   r   r   r  r   r   r   r_   c
              
   C   s(  | j ||||||||	d}
|
j}| |}|dur|jd }n|jd }| jjdu r2|dkr2td| jjdu r;d}n1|dur`|| jjk|jt	j
}t	j|jd |jt	j
d}|| d}nd}t| jj d |t	j||jd	|f }d}|dur| j|||| jd
}t|||
j|
j|
jdS )  
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        rl   r\   r   r   r   r   r   Nr   r!   z=Cannot handle batch sizes > 1 if no padding token is defined.r5   )r   r6   z will not detect padding tokens in `inputs_embeds`. Results may be unexpected if using padding tokens in conjunction with `inputs_embeds.`r   )r   r  pooled_logitsrI   r  )r   r   r  r>   rI   r   r   r7   r   r*   Zint32r   Zargmaxr   r   r1   rA   r  r   r   r;   r   )r-   r   rl   r\   r   r   r  r   r   r   Ztransformer_outputsr;   r   r   Zlast_non_pad_tokenZnon_pad_maskZtoken_indicesr  r  r2   r2   r3   r<     sL   


z&Qwen3ForSequenceClassification.forwardr   )rA   rB   rC   r(   r   r   r   r   r   r*   r   r   r	   r   r   r   r<   rD   r2   r2   r0   r3   r	    sH    		
r	  c                       r  )Qwen3ForTokenClassificationc                    s|   t  | |j| _t|| _t|dd d ur|j}nt|dd d ur'|j}nd}t	|| _
t|j|j| _|   d S )Nclassifier_dropouthidden_dropoutg?)r'   r(   r
  r   r   r   r  r  r   ZDropoutrn   rJ   r.   r  r   )r-   rI   r  r0   r2   r3   r(   _  s   
z$Qwen3ForTokenClassification.__init__c                 C   r   rP   r   r?   r2   r2   r3   r   o  r   z0Qwen3ForTokenClassification.get_input_embeddingsc                 C   r   rP   r   r   r2   r2   r3   r   r  r   z0Qwen3ForTokenClassification.set_input_embeddingsNr   rl   r\   r   r   r  r   r   r   r_   c
              
   C   sd   | j ||||||||	d}
|
j}| |}| |}d}|dur(| ||| j}t|||
j|
jdS )r  r  N)r  r   r;   r   )	r   r   rn   r  r  rI   r   r;   r   )r-   r   rl   r\   r   r   r  r   r   r   r   sequence_outputr   r  r2   r2   r3   r<   u  s,   


z#Qwen3ForTokenClassification.forwardr   )rA   rB   rC   r(   r   r   r   r   r   r*   r   r   r	   r   r   r   r<   rD   r2   r2   r0   r3   r  ]  sH    	
r  c                       s   e Zd ZdZ fddZdd Zdd Zee									dd	e	e
j d
e	e
j de	e
j de	e de	e
j de	e
j de	e
j de	e de	e defddZ  ZS )Qwen3ForQuestionAnsweringtransformerc                    s2   t  | t|| _t|jd| _|   d S )Nr4   )	r'   r(   r   r  r   rJ   r.   
qa_outputsr   rO   r0   r2   r3   r(     s   
z"Qwen3ForQuestionAnswering.__init__c                 C   r   rP   r  r   r?   r2   r2   r3   r     r   z.Qwen3ForQuestionAnswering.get_input_embeddingsc                 C   r   rP   r  r   r2   r2   r3   r     r   z.Qwen3ForQuestionAnswering.set_input_embeddingsNr   rl   r\   r   r   start_positionsend_positionsr   r   r_   c
              	   K   s   | j |||||||	d}|j}| |}|jddd\}}|d }|d }d }|d urA|d urA| j||||fi |
}t||||j|j	dS )N)rl   r\   r   r   r   r   r!   r5   rR   )r  start_logits
end_logitsr;   r   )
r  r   r  splitZsqueezeru   r  r   r;   r   )r-   r   rl   r\   r   r   r  r  r   r   rv   r   r  r   r  r  r  r2   r2   r3   r<     s0   

z!Qwen3ForQuestionAnswering.forwardr   )rA   rB   rC   r   r(   r   r   r   r   r   r*   r   r   r	   r   r   r   r<   rD   r2   r2   r0   r3   r    sJ    	
r  )r   r  r   r   r	  r  )Nr!   )rg   )Jtypingr   r   r   r   r*   r   Zactivationsr   Zcache_utilsr	   r
   r   r   Z
generationr   Zintegrationsr   Zmodeling_attn_mask_utilsr   Zmodeling_flash_attention_utilsr   Zmodeling_layersr   Zmodeling_outputsr   r   r   r   r   Zmodeling_rope_utilsr   r   Zmodeling_utilsr   r   Zprocessing_utilsr   utilsr   r   r   r   r    Zconfiguration_qwen3r"   Z!torch.nn.attention.flex_attentionr#   Zintegrations.flex_attentionr$   Z
get_loggerrA   r   Moduler%   rE   rV   r]   r   r   rf   r   r|   r}   r   r   r   r   r   r   r	  r  r  __all__r2   r2   r2   r3   <module>   s~   


V:"  lVF>