o
    Zh¦                     @   s  d dl mZmZmZmZ d dlZd dlmZ ddlmZ ddl	m
Z
mZmZmZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZmZmZmZmZ ddlmZm Z  ddl!m"Z"m#Z# ddl$m%Z% ddl&m'Z'm(Z(m)Z)m*Z*m+Z+ ddl,m-Z- e* rd dl.m/Z/ ddl0m1Z1 e+2e3Z4G dd dej5Z6dd Z7dDddZ8dej9de:dej9fddZ;	 dEd!ej5d"ej9d#ej9d$ej9d%eej9 d&e<d'e<fd(d)Z=G d*d+ d+ej5Z>ed,G d-d. d.ej5Z?G d/d0 d0eZ@e(G d1d2 d2e#ZAG d3d4 d4ej5ZBe(G d5d6 d6eAZCG d7d8 d8ee'ZDe(G d9d: d:eAeZEe(d;d<G d=d> d>eAZFe(G d?d@ d@eAZGe(G dAdB dBeAZHg dCZIdS )F    )CallableOptionalTupleUnionN)nn   )ACT2FN)CacheDynamicCacheSlidingWindowCacheStaticCache)GenerationMixin)use_kernel_forward_from_hub)AttentionMaskConverter)FlashAttentionKwargs)GradientCheckpointingLayer)BaseModelOutputWithPastCausalLMOutputWithPastQuestionAnsweringModelOutput SequenceClassifierOutputWithPastTokenClassifierOutput)ROPE_INIT_FUNCTIONSdynamic_rope_update)ALL_ATTENTION_FUNCTIONSPreTrainedModel)Unpack)
LossKwargsauto_docstringcan_return_tupleis_torch_flex_attn_availablelogging   )Qwen2Config)	BlockMask)make_flex_block_causal_maskc                       s$   e Zd Z fddZdd Z  ZS )Qwen2MLPc                    sr   t    || _|j| _|j| _tj| j| jdd| _tj| j| jdd| _tj| j| jdd| _	t
|j | _d S NFbias)super__init__confighidden_sizeZintermediate_sizer   Linear	gate_projup_proj	down_projr   Z
hidden_actact_fnselfr+   	__class__ W/var/www/auris/lib/python3.10/site-packages/transformers/models/qwen2/modeling_qwen2.pyr*   +   s   
zQwen2MLP.__init__c                 C   s$   |  | | || | }|S N)r0   r1   r.   r/   )r3   xr0   r6   r6   r7   forward5   s    zQwen2MLP.forward)__name__
__module____qualname__r*   r:   __classcell__r6   r6   r4   r7   r%   *   s    
r%   c                 C   sH   | dd| j d d f }| d| j d d df }tj| |fddS )z*Rotates half the hidden dims of the input..N   dim)shapetorchcat)r9   x1Zx2r6   r6   r7   rotate_half:   s   rG   c                 C   sD   | |}| |}| | t| |  }|| t||  }||fS )a  Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    )	unsqueezerG   )qkcossinposition_idsZunsqueeze_dimZq_embedZk_embedr6   r6   r7   apply_rotary_pos_embA   s
   

rN   hidden_statesn_repreturnc                 C   s^   | j \}}}}|dkr| S | dddddddddf |||||} | ||| ||S )z
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    r!   N)rC   expandreshape)rO   rP   batchnum_key_value_headsslenhead_dimr6   r6   r7   	repeat_kv\   s
   0rX           modulequerykeyvalueattention_maskscalingdropoutc                 K   s   t || j}t || j}	t||dd| }
|d ur3|d d d d d d d |jd f }|
| }
tjj|
dtj	d
|j}
tjj|
|| jd}
t|
|	}|dd }||
fS )Nr@   r   r?   )rB   dtype)ptrainingr!   )rX   num_key_value_groupsrD   matmul	transposerC   r   Z
functionalZsoftmaxfloat32torb   r`   rd   
contiguous)rZ   r[   r\   r]   r^   r_   r`   kwargs
key_statesvalue_statesattn_weightscausal_maskattn_outputr6   r6   r7   eager_attention_forwardh   s   
&rq   c                       s   e Zd ZdZdedef fddZ		ddejde	ejejf d	e
ej d
e
e de
ej dee de	eje
ej e
e	ej  f fddZ  ZS )Qwen2Attentionz=Multi-headed attention from 'Attention Is All You Need' paperr+   	layer_idxc                    s   t    || _|| _t|d|j|j | _|j|j | _	| jd | _
|j| _d| _tj|j|j| j dd| _tj|j|j| j dd| _tj|j|j| j dd| _tj|j| j |jdd| _d S )NrW   g      Tr'   F)r)   r*   r+   rs   getattrr,   Znum_attention_headsrW   rU   re   r_   attention_dropoutZ	is_causalr   r-   q_projk_projv_projo_projr3   r+   rs   r4   r6   r7   r*      s   
 zQwen2Attention.__init__NrO   position_embeddingsr^   past_key_valuecache_positionrk   rQ   c                 K   s~  |j d d }g |d| jR }| ||dd}	| ||dd}
| ||dd}|\}}t|	|
||\}	}
|d urW|||d}||
|| j	|\}
}d }| j
jrqt| j
dd d urq| j	| j
jkrq| j
j}t}| j
jdkr| j
jdkr|dd	rtd
 nt| j
j }|| |	|
||f| jsdn| j| j|d|\}}|jg |dR   }| |}||fS )Nr?   r!   r@   )rL   rK   r}   sliding_windoweagersdpaoutput_attentionsFz`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.rY   )r`   r_   r~   )rC   rW   rv   viewrg   rw   rx   rN   updaters   r+   use_sliding_windowrt   Zmax_window_layersr~   rq   _attn_implementationgetloggerwarning_oncer   rd   ru   r_   rS   rj   ry   )r3   rO   r{   r^   r|   r}   rk   Zinput_shapeZhidden_shapeZquery_statesrl   rm   rK   rL   Zcache_kwargsr~   Zattention_interfacerp   rn   r6   r6   r7   r:      sN   		

zQwen2Attention.forward)NN)r;   r<   r=   __doc__r"   intr*   rD   Tensorr   r   r	   
LongTensorr   r   r:   r>   r6   r6   r4   r7   rr      s(    rr   ZRMSNormc                       s.   e Zd Zd fdd	Zdd Zdd Z  ZS )	Qwen2RMSNormư>c                    s&   t    tt|| _|| _dS )z;
        Qwen2RMSNorm is equivalent to T5LayerNorm
        N)r)   r*   r   	ParameterrD   Zonesweightvariance_epsilon)r3   r,   epsr4   r6   r7   r*      s   

zQwen2RMSNorm.__init__c                 C   sJ   |j }|tj}|djddd}|t|| j  }| j|| S )Nr@   r?   T)Zkeepdim)	rb   ri   rD   rh   powmeanZrsqrtr   r   )r3   rO   Zinput_dtypeZvariancer6   r6   r7   r:      s
   zQwen2RMSNorm.forwardc                 C   s   t | jj d| j S )Nz, eps=)tupler   rC   r   r3   r6   r6   r7   
extra_repr   s   zQwen2RMSNorm.extra_repr)r   )r;   r<   r=   r*   r:   r   r>   r6   r6   r4   r7   r      s    r   c                       s   e Zd Zdedef fddZ							ddejdeej d	eej	 d
ee
 dee dee deej	 deeejejf  dee deejeeejejf  f fddZ  ZS )Qwen2DecoderLayerr+   rs   c                    s~   t    |j| _t||d| _t|| _t|j|jd| _	t|j|jd| _
|jr;|jdkr=td|j d d S d S d S )N)r+   rs   r   flash_attention_2z=Sliding Window Attention is enabled but not implemented for `z)`; unexpected results may be encountered.)r)   r*   r,   rr   	self_attnr%   mlpr   rms_norm_epsinput_layernormpost_attention_layernormr   r   r   r   rz   r4   r6   r7   r*      s   

zQwen2DecoderLayer.__init__NFrO   r^   rM   r|   r   	use_cacher}   r{   rk   rQ   c	                 K   st   |}
|  |}| jd||||||||d|	\}}|
| }|}
| |}| |}|
| }|f}|r8||f7 }|S )N)rO   r^   rM   r|   r   r   r}   r{   r6   )r   r   r   r   )r3   rO   r^   rM   r|   r   r   r}   r{   rk   ZresidualZself_attn_weightsoutputsr6   r6   r7   r:      s.   
	



zQwen2DecoderLayer.forward)NNNFFNN)r;   r<   r=   r"   r   r*   rD   r   r   r   r	   boolr   r   r   FloatTensorr:   r>   r6   r6   r4   r7   r      s<    	
r   c                   @   sH   e Zd ZeZdZdZdgZdgZdZ	dZ
dZdZdZdZdZdd ZdS )Qwen2PreTrainedModelmodelTr   past_key_valuesc                 C   s   | j j}t|tjr"|jjjd|d |jd ur |jj	  d S d S t|tj
rC|jjjd|d |jd urA|jj|j 	  d S d S t|trQ|jjd d S d S )NrY   )r   stdg      ?)r+   Zinitializer_range
isinstancer   r-   r   dataZnormal_r(   Zzero_	Embeddingpadding_idxr   Zfill_)r3   rZ   r   r6   r6   r7   _init_weights*  s   


z"Qwen2PreTrainedModel._init_weightsN)r;   r<   r=   r"   Zconfig_classbase_model_prefixZsupports_gradient_checkpointingZ_no_split_modulesZ_skip_keys_device_placementZ_supports_flash_attn_2Z_supports_sdpaZ_supports_flex_attnZ_supports_cache_classZ_supports_quantized_cacheZ_supports_static_cacheZ_supports_attention_backendr   r6   r6   r6   r7   r     s    r   c                       s8   e Zd Zddef fddZe edd Z  Z	S )Qwen2RotaryEmbeddingNr+   c                    s   t    t|dr|jd ur|jd|jd| _nd| _|j| _|j| _|| _	t
| j | _| | j	|\}| _| jd|dd | j| _d S )Nrope_scaling	rope_typetypedefaultinv_freqF)
persistent)r)   r*   hasattrr   r   r   Zmax_position_embeddingsZmax_seq_len_cachedZoriginal_max_seq_lenr+   r   Zrope_init_fnattention_scalingZregister_bufferr   Zoriginal_inv_freq)r3   r+   devicer   r4   r6   r7   r*   9  s   
zQwen2RotaryEmbedding.__init__c           
      C   s   | j d d d d f  |jd dd|j}|d d d d d f  }t|jjtr6|jjdkr6|jjnd}t	j
|dd+ | |  dd}t	j||fdd	}| | j }| | j }	W d    n1 smw   Y  |j|jd
|	j|jd
fS )Nr   r?   r!   ZmpscpuF)device_typeenabledr@   rA   )rb   )r   floatrR   rC   ri   r   r   r   strrD   Zautocastrg   rE   rK   r   rL   rb   )
r3   r9   rM   Zinv_freq_expandedZposition_ids_expandedr   ZfreqsZembrK   rL   r6   r6   r7   r:   J  s   0&zQwen2RotaryEmbedding.forwardr8   )
r;   r<   r=   r"   r*   rD   Zno_gradr   r:   r>   r6   r6   r4   r7   r   8  s
    r   c                       s  e Zd Zdef fddZdd Zdd Zee									d!d	e	e
j d
e	e
j de	e
j de	e de	e
j de	e de	e de	e de	e
j dee defddZ	d"d
ee
jdf de
jde
jdedef
ddZed
e
jdedede
jde
jdededefdd Z  ZS )#
Qwen2Modelr+   c                    s   t     j| _ j| _t j j| j| _t	 fddt
 jD | _t j jd| _t d| _d| _|   d S )Nc                    s   g | ]}t  |qS r6   )r   ).0rs   r+   r6   r7   
<listcomp>c  s    z'Qwen2Model.__init__.<locals>.<listcomp>r   r   F)r)   r*   pad_token_idr   
vocab_sizer   r   r,   embed_tokensZ
ModuleListrangenum_hidden_layerslayersr   r   normr   
rotary_embgradient_checkpointing	post_initr2   r4   r   r7   r*   \  s   zQwen2Model.__init__c                 C      | j S r8   r   r   r6   r6   r7   get_input_embeddingsl     zQwen2Model.get_input_embeddingsc                 C   
   || _ d S r8   r   r3   r]   r6   r6   r7   set_input_embeddingso     
zQwen2Model.set_input_embeddingsN	input_idsr^   rM   r   inputs_embedsr   r   output_hidden_statesr}   flash_attn_kwargsrQ   c
                 K   s  |d ur|n| j j}|d ur|n| j j}|d ur|n| j j}|d u |d uA r*td| jr9| jr9|r9td d}t	|t
d tfsFtd|d u rO| |}|rX|d u rXt }|	d u rt|d urd| nd}tj|||jd  |jd}	|d u r}|	d}| |||	||}|}| ||}|rdnd }|rdnd }| jd | j j D ]&}|r||f7 }||f||||||	|d	|
}|d }|r||d f7 }q| |}|r||f7 }t||r|nd ||d
S )Nz:You must specify exactly one of input_ids or inputs_embedszX`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.FzBThe `past_key_values` should be either a `Cache` object or `None`.r   r!   r   r6   )r^   rM   r|   r   r   r}   r{   )last_hidden_stater   rO   
attentions)r+   r   r   r   
ValueErrorr   rd   r   r   r   r   r	   r   r
   get_seq_lengthrD   arangerC   r   rH   _update_causal_maskr   r   r   r   r   )r3   r   r^   rM   r   r   r   r   r   r}   r   past_seen_tokensro   rO   r{   Zall_hidden_statesZall_self_attnsZdecoder_layerZlayer_outputsr6   r6   r7   r:   r  sx   



	


zQwen2Model.forwardFr#   input_tensorc              
   C   s  | j jdkr2|d ur&|d ur&|d d df   | d k}|r&td|d ur0d|v r0|S d S | j jdkrDt|tjrBt	|}|S |d urL|
 nd}t|t}t|t}	| j jdkrs|ss|	ss|sstj|||| j j| jdrsd S |j}
t|
j}|jd	 }|	s|r| }nt|tjr|jd n|| d	 }| j||||
||jd | j |d
}| j jdkr|d ur|jjdv r|st||}|S )Nr   r?   r   zYou are attempting to perform batched generation with padding_side='right' this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to  call `tokenizer.padding_side  = 'left'` before tokenizing the input. rY   Zflex_attentionr   )r   Zpast_key_values_lengthr~   Zis_trainingr!   )sequence_lengthtarget_lengthrb   r}   
batch_sizer+   r   )cudaZxpuZnpu)r+   r   sumitemsizer   r   rD   r   r$   r   r   r   r   Z_ignore_causal_mask_sdpar~   rd   rb   finfominrC   Zget_max_cache_shape5_prepare_4d_causal_attention_mask_with_cache_positionr   r   Z_unmask_unattended)r3   r^   r   r}   r   r   Zis_padding_rightr   Zusing_static_cacheZusing_sliding_window_cacherb   	min_dtyper   r   ro   r6   r6   r7   r     st   $





zQwen2Model._update_causal_maskr   r   rb   r   c                 C   s  | dur|   dkr| }|S t|j}	tj||f|	||jd}tj||jd|ddk}
| }t	|ddr\|j
dur\t|trF||kr\tj||jd|dd|j
 k}|
| ||
9 }|ddddddf |ddd}| dur| }| jd |kr| ddd|f } | jd }|ddddddd|f | ddddddf |j }|d	k}|ddddddd|f ||	|ddddddd|f< |S )
a  
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

        Args:
            attention_mask (`torch.Tensor`):
                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
            sequence_length (`int`):
                The sequence length being processed.
            target_length (`int`):
                The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
            dtype (`torch.dtype`):
                The dtype to use for the 4D attention mask.
            cache_position (`torch.Tensor`):
                Indices depicting the position of the input sequence tokens in the sequence.
            batch_size (`torch.Tensor`):
                Batch size.
            config (`Qwen2Config`):
                The model's configuration class
            past_key_values (`Cache`):
                The cache class that is being used currently to generate
        N   )Z
fill_valuerb   r   r   r?   r!   r   Tr   )rB   rD   r   r   fullr   r   rS   Zget_text_configrt   r~   r   r   Zbitwise_or_rR   clonerC   ri   Zmasked_fill)r^   r   r   rb   r}   r   r+   r   ro   r   Zdiagonal_attend_maskZtext_configZsliding_attend_maskZmask_lengthZpadding_maskr6   r6   r7   r   (  s@   ! 
$
6  z@Qwen2Model._prepare_4d_causal_attention_mask_with_cache_position	NNNNNNNNN)F)r;   r<   r=   r"   r*   r   r   r   r   r   rD   r   r   r	   r   r   r   r   r   r:   r   r   staticmethodr   rb   r   r>   r6   r6   r4   r7   r   Z  s    	
d
Vr   c                   @   s   e Zd ZdS )KwargsForCausalLMN)r;   r<   r=   r6   r6   r6   r7   r   n  s    r   c                       s
  e Zd ZdgZddiZddgdgfiZ fddZdd	 Zd
d Zdd Z	dd Z
dd Zdd Zee											d%deej deej deej dee deej deej dee dee dee deej d eeejf d!ee d"efd#d$Z  ZS )&Qwen2ForCausalLMzlm_head.weightlm_headZcolwise_reprO   logitsc                    s@   t  | t|| _|j| _tj|j|jdd| _| 	  d S r&   )
r)   r*   r   r   r   r   r-   r,   r   r   r2   r4   r6   r7   r*   w  s
   
zQwen2ForCausalLM.__init__c                 C      | j jS r8   r   r   r   r6   r6   r7   r        z%Qwen2ForCausalLM.get_input_embeddingsc                 C      || j _d S r8   r   r   r6   r6   r7   r        z%Qwen2ForCausalLM.set_input_embeddingsc                 C   r   r8   r   r   r6   r6   r7   get_output_embeddings  r   z&Qwen2ForCausalLM.get_output_embeddingsc                 C   r   r8   r   )r3   Znew_embeddingsr6   r6   r7   set_output_embeddings  r   z&Qwen2ForCausalLM.set_output_embeddingsc                 C   r   r8   r   )r3   decoderr6   r6   r7   set_decoder  r   zQwen2ForCausalLM.set_decoderc                 C   r   r8   r   r   r6   r6   r7   get_decoder  r   zQwen2ForCausalLM.get_decoderNr   r   r^   rM   r   r   labelsr   r   r   r}   logits_to_keeprk   rQ   c                 K   s   |dur|n| j j}|	dur|	n| j j}	| jd||||||||	|
d	|}|j}t|tr4t| dn|}| |dd|ddf }d}|durX| j	d||| j j
d|}t|||j|j|jdS )at  
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from transformers import AutoTokenizer, Qwen2ForCausalLM

        >>> model = Qwen2ForCausalLM.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
        >>> tokenizer = AutoTokenizer.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```N)	r   r^   rM   r   r   r   r   r   r}   )r   r   r   lossr   r   rO   r   r6   )r+   r   r   r   r   r   r   slicer   loss_functionr   r   r   rO   r   )r3   r   r^   rM   r   r   r   r   r   r   r}   r  rk   r   rO   Zslice_indicesr   r  r6   r6   r7   r:     s:   '
zQwen2ForCausalLM.forward)NNNNNNNNNNr   )r;   r<   r=   Z_tied_weights_keysZ_tp_planZ_pp_planr*   r   r   r   r   r   r   r   r   r   rD   r   r   r	   r   r   r   r   r   r   r   r:   r>   r6   r6   r4   r7   r   q  sf    		
r   a  
    The Qwen2 Model transformer with a sequence classification head on top (linear layer).

    [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    )Zcustom_introc                          e Zd Z fddZdd Zdd Zee									ddee	j
 d	ee	j d
ee	j
 dee dee	j dee	j
 dee dee dee defddZ  ZS )Qwen2ForSequenceClassificationc                    s@   t  | |j| _t|| _tj|j| jdd| _| 	  d S r&   )
r)   r*   
num_labelsr   r   r   r-   r,   scorer   r2   r4   r6   r7   r*     s
   
z'Qwen2ForSequenceClassification.__init__c                 C   r   r8   r   r   r6   r6   r7   r     r   z3Qwen2ForSequenceClassification.get_input_embeddingsc                 C   r   r8   r   r   r6   r6   r7   r     r   z3Qwen2ForSequenceClassification.set_input_embeddingsNr   r^   rM   r   r   r   r   r   r   rQ   c
              
   C   s(  | j ||||||||	d}
|
j}| |}|dur|jd }n|jd }| jjdu r2|dkr2td| jjdu r;d}n1|dur`|| jjk|jt	j
}t	j|jd |jt	j
d}|| d}nd}t| jj d |t	j||jd	|f }d}|dur| j|||| jd
}t|||
j|
j|
jdS )  
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        r^   rM   r   r   r   r   r   Nr   r!   z=Cannot handle batch sizes > 1 if no padding token is defined.r?   )r   rb   z will not detect padding tokens in `inputs_embeds`. Results may be unexpected if using padding tokens in conjunction with `inputs_embeds.`r   )r   r   pooled_logitsr+   r  )r   r   r	  rC   r+   r   r   ri   r   rD   Zint32r   Zargmaxr   r   r5   r;   r  r   r   rO   r   )r3   r   r^   rM   r   r   r   r   r   r   Ztransformer_outputsrO   r   r   Zlast_non_pad_tokenZnon_pad_maskZtoken_indicesr  r  r6   r6   r7   r:     sL   


z&Qwen2ForSequenceClassification.forwardr   )r;   r<   r=   r*   r   r   r   r   r   rD   r   r   r	   r   r   r   r:   r>   r6   r6   r4   r7   r    sH    		
r  c                       r  )Qwen2ForTokenClassificationc                    s|   t  | |j| _t|| _t|dd d ur|j}nt|dd d ur'|j}nd}t	|| _
t|j|j| _|   d S )Nclassifier_dropouthidden_dropoutg?)r)   r*   r  r   r   rt   r  r  r   ZDropoutr`   r-   r,   r	  r   )r3   r+   r  r4   r6   r7   r*   D  s   
z$Qwen2ForTokenClassification.__init__c                 C   r   r8   r   r   r6   r6   r7   r   T  r   z0Qwen2ForTokenClassification.get_input_embeddingsc                 C   r   r8   r   r   r6   r6   r7   r   W  r   z0Qwen2ForTokenClassification.set_input_embeddingsNr   r^   rM   r   r   r   r   r   r   rQ   c
              
   C   sd   | j ||||||||	d}
|
j}| |}| |}d}|dur(| ||| j}t|||
j|
jdS )r
  r  N)r  r   rO   r   )	r   r   r`   r	  r  r+   r   rO   r   )r3   r   r^   rM   r   r   r   r   r   r   r   sequence_outputr   r  r6   r6   r7   r:   Z  s,   


z#Qwen2ForTokenClassification.forwardr   )r;   r<   r=   r*   r   r   r   r   r   rD   r   r   r	   r   r   r   r:   r>   r6   r6   r4   r7   r  B  sH    	
r  c                       s   e Zd ZdZ fddZdd Zdd Zee									dd	e	e
j d
e	e
j de	e
j de	e de	e
j de	e
j de	e
j de	e de	e defddZ  ZS )Qwen2ForQuestionAnsweringtransformerc                    s2   t  | t|| _t|jd| _|   d S )Nr@   )	r)   r*   r   r  r   r-   r,   
qa_outputsr   r2   r4   r6   r7   r*     s   
z"Qwen2ForQuestionAnswering.__init__c                 C   r   r8   r  r   r   r6   r6   r7   r     r   z.Qwen2ForQuestionAnswering.get_input_embeddingsc                 C   r   r8   r  r   r6   r6   r7   r     r   z.Qwen2ForQuestionAnswering.set_input_embeddingsNr   r^   rM   r   r   start_positionsend_positionsr   r   rQ   c
              	   K   s   | j |||||||	d}|j}| |}|jddd\}}|d }|d }d }|d urA|d urA| j||||fi |
}t||||j|j	dS )N)r^   rM   r   r   r   r   r!   r?   rA   )r  start_logits
end_logitsrO   r   )
r  r   r  splitZsqueezerj   r  r   rO   r   )r3   r   r^   rM   r   r   r  r  r   r   rk   r   r  r   r  r  r  r6   r6   r7   r:     s0   

z!Qwen2ForQuestionAnswering.forwardr   )r;   r<   r=   r   r*   r   r   r   r   r   rD   r   r   r	   r   r   r   r:   r>   r6   r6   r4   r7   r    sJ    	
r  )r   r   r   r  r  r  )Nr!   )rY   )Jtypingr   r   r   r   rD   r   Zactivationsr   Zcache_utilsr	   r
   r   r   Z
generationr   Zintegrationsr   Zmodeling_attn_mask_utilsr   Zmodeling_flash_attention_utilsr   Zmodeling_layersr   Zmodeling_outputsr   r   r   r   r   Zmodeling_rope_utilsr   r   Zmodeling_utilsr   r   Zprocessing_utilsr   utilsr   r   r   r   r    Zconfiguration_qwen2r"   Z!torch.nn.attention.flex_attentionr#   Zintegrations.flex_attentionr$   Z
get_loggerr;   r   Moduler%   rG   rN   r   r   rX   r   rq   rr   r   r   r   r   r   r   r   r  r  r  __all__r6   r6   r6   r7   <module>   s~   


L8"  lVF>