o
    ZhT!                     @   st   d Z ddlmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 e
eZG dd	 d	eZG d
d deZd	gZdS )zPLBART model configuration    OrderedDict)Mapping   )PretrainedConfig)OnnxConfigWithPast)loggingc                       sf   e Zd ZdZdZdgZdddZ					
				
																	d fdd	Z  ZS )PLBartConfiga  
    This is the configuration class to store the configuration of a [`PLBartModel`]. It is used to instantiate an
    PLBART model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the PLBART
    [uclanlp/plbart-base](https://huggingface.co/uclanlp/plbart-base) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50005):
            Vocabulary size of the PLBART model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`PLBartModel`].
        d_model (`int`, *optional*, defaults to 768):
            Dimensionality of the layers and the pooler layer.
        encoder_layers (`int`, *optional*, defaults to 6):
            Number of encoder layers.
        decoder_layers (`int`, *optional*, defaults to 6):
            Number of decoder layers.
        encoder_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        decoder_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer decoder.
        decoder_ffn_dim (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        encoder_ffn_dim (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        classifier_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for classifier.
        max_position_embeddings (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        encoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        decoder_layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        scale_embedding (`bool`, *optional*, defaults to `True`):
            Scale embeddings by diving by sqrt(d_model).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models)
        forced_eos_token_id (`int`, *optional*, defaults to 2):
            The id of the token to force as the last generated token when `max_length` is reached. Usually set to
            `eos_token_id`.

    Example:

    ```python
    >>> from transformers import PLBartConfig, PLBartModel

    >>> # Initializing a PLBART uclanlp/plbart-base style configuration
    >>> configuration = PLBartConfig()

    >>> # Initializing a model (with random weights) from the uclanlp/plbart-base style configuration
    >>> model = PLBartModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZplbartZpast_key_valuesencoder_attention_headsd_model)Znum_attention_headsZhidden_sizeU                      Tgelu   皙?{Gz?   r      c                    s   || _ || _|| _|| _|| _|| _|| _|| _|| _|| _	|| _
|| _|| _|| _|	| _|
| _|| _|| _|| _|| _t jd|||||d| d S )N)pad_token_idbos_token_ideos_token_idis_encoder_decoderforced_eos_token_id )
vocab_sizemax_position_embeddingsr   encoder_ffn_dimencoder_layersr
   decoder_ffn_dimdecoder_layersdecoder_attention_headsdropoutattention_dropoutactivation_dropoutactivation_functioninit_stdencoder_layerdropdecoder_layerdropclassifier_dropout	use_cacheZnum_hidden_layersscale_embeddingsuper__init__)selfr   r   r!   r    r
   r#   r"   r$   r*   r+   r-   r   r(   r   r%   r&   r'   r)   r,   r.   r   r   r   r   kwargs	__class__r   ^/var/www/auris/lib/python3.10/site-packages/transformers/models/plbart/configuration_plbart.pyr0   j   s:   
zPLBartConfig.__init__)r   r   r   r   r   r   r   r   r   r   TTr   r   r   r   r   r   r   Tr   r   r   r   )	__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferenceZattribute_mapr0   __classcell__r   r   r3   r5   r	      s<    I
r	   c                   @   sP   e Zd Zedeeeeef f fddZedeeeeef f fddZdS )PLBartOnnxConfigreturnc                 C   s    t ddddfddddfgS )NZ	input_idsbatchsequencer   r   Zattention_maskr   r1   r   r   r5   inputs   s
   zPLBartOnnxConfig.inputsc                 C   sR   | j rtddddfddddfddddfgS tddddfddddfgS )NZlast_hidden_stater=   r>   r?   Z	past_keys)r   r   Zencoder_last_hidden_state)Zuse_pastr   r@   r   r   r5   outputs   s   zPLBartOnnxConfig.outputsN)	r6   r7   r8   propertyr   strintrA   rB   r   r   r   r5   r;      s
     $r;   N)r9   collectionsr   typingr   Zconfiguration_utilsr   Zonnxr   utilsr   Z
get_loggerr6   loggerr	   r;   __all__r   r   r   r5   <module>   s   
 	
