o
    ZhG                     @   s  d dl mZmZmZmZmZ d dlZd dlmZ ddlm	Z	 ddl
mZmZmZmZ ddlmZ ddlmZ dd	lmZ dd
lmZ ddlmZ ddlmZmZmZmZmZ ddlm Z m!Z! ddl"m#Z#m$Z$ ddl%m&Z& ddl'm(Z(m)Z)m*Z*m+Z+m,Z, ddl-m.Z. e+ rd dl/m0Z0 ddl1m2Z2 e,3e4Z5G dd dej6Z7dd Z8dDddZ9dej:de;dej:fddZ<	 dEd!ej6d"ej:d#ej:d$ej:d%eej: d&e=d'e=fd(d)Z>G d*d+ d+ej6Z?ed,G d-d. d.ej6Z@G d/d0 d0eZAe)G d1d2 d2e$ZBG d3d4 d4ej6ZCe)G d5d6 d6eBZDG d7d8 d8ee(ZEe)G d9d: d:eBeZFe)G d;d< d<eBZGe)d=d>G d?d@ d@eBZHe)G dAdB dBeBZIg dCZJdS )F    )CallableListOptionalTupleUnionN)nn   )ACT2FN)CacheDynamicCacheSlidingWindowCacheStaticCache)GenerationMixin)use_kernel_forward_from_hub)AttentionMaskConverter)FlashAttentionKwargs)GradientCheckpointingLayer)BaseModelOutputWithPastCausalLMOutputWithPastQuestionAnsweringModelOutput SequenceClassifierOutputWithPastTokenClassifierOutput)ROPE_INIT_FUNCTIONSdynamic_rope_update)ALL_ATTENTION_FUNCTIONSPreTrainedModel)Unpack)
LossKwargsauto_docstringcan_return_tupleis_torch_flex_attn_availablelogging   )MistralConfig)	BlockMask)make_flex_block_causal_maskc                       s$   e Zd Z fddZdd Z  ZS )
MistralMLPc                    sr   t    || _|j| _|j| _tj| j| jdd| _tj| j| jdd| _tj| j| jdd| _	t
|j | _d S NFbias)super__init__confighidden_sizeZintermediate_sizer   Linear	gate_projup_proj	down_projr	   Z
hidden_actact_fnselfr,   	__class__ [/var/www/auris/lib/python3.10/site-packages/transformers/models/mistral/modeling_mistral.pyr+   +   s   
zMistralMLP.__init__c                 C   s$   |  | | || | }|S N)r1   r2   r/   r0   )r4   xr1   r7   r7   r8   forward5   s    zMistralMLP.forward)__name__
__module____qualname__r+   r;   __classcell__r7   r7   r5   r8   r&   *   s    
r&   c                 C   sH   | dd| j d d f }| d| j d d df }tj| |fddS )z*Rotates half the hidden dims of the input..N   dim)shapetorchcat)r:   x1Zx2r7   r7   r8   rotate_half:   s   rH   c                 C   sD   | |}| |}| | t| |  }|| t||  }||fS )a  Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    )	unsqueezerH   )qkcossinposition_idsZunsqueeze_dimZq_embedZk_embedr7   r7   r8   apply_rotary_pos_embA   s
   

rO   hidden_statesn_repreturnc                 C   s^   | j \}}}}|dkr| S | dddddddddf |||||} | ||| ||S )z
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    r"   N)rD   expandreshape)rP   rQ   batchnum_key_value_headsslenhead_dimr7   r7   r8   	repeat_kv\   s
   0rY           modulequerykeyvalueattention_maskscalingdropoutc                 K   s   t || j}t || j}	t||dd| }
|d ur3|d d d d d d d |jd f }|
| }
tjj|
dtj	d
|j}
tjj|
|| jd}
t|
|	}|dd }||
fS )NrA   r   r@   )rC   dtype)ptrainingr"   )rY   num_key_value_groupsrE   matmul	transposerD   r   Z
functionalZsoftmaxfloat32torc   ra   re   
contiguous)r[   r\   r]   r^   r_   r`   ra   kwargs
key_statesvalue_statesattn_weightscausal_maskattn_outputr7   r7   r8   eager_attention_forwardh   s   
&rr   c                       s   e Zd ZdZdedef fddZ		ddejde	ejejf d	e
ej d
e
e de
ej dee de	eje
ej e
e	ej  f fddZ  ZS )MistralAttentionz=Multi-headed attention from 'Attention Is All You Need' paperr,   	layer_idxc                    s   t    || _|| _t|dd p|j|j | _|j|j | _	| jd | _
|j| _d| _tj|j|j| j dd| _tj|j|j| j dd| _tj|j|j| j dd| _tj|j| j |jdd| _d S )NrX   g      TFr(   )r*   r+   r,   rt   getattrr-   Znum_attention_headsrX   rV   rf   r`   attention_dropoutZ	is_causalr   r.   q_projk_projv_projo_projr4   r,   rt   r5   r7   r8   r+      s   
 zMistralAttention.__init__NrP   position_embeddingsr_   past_key_valuecache_positionrl   rR   c                 K   sT  |j d d }g |d| jR }| ||dd}	| ||dd}
| ||dd}|\}}t|	|
||\}	}
|d urW|||d}||
|| j	|\}
}t
}| jjdkrw| jjdkrq|ddrqtd	 nt| jj }|| |	|
||f| jsd
n| j| jt| jdd d|\}}|jg |dR   }| |}||fS )Nr@   r"   rA   )rM   rL   r~   eagersdpaoutput_attentionsFz`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.rZ   sliding_window)ra   r`   r   )rD   rX   rw   viewrh   rx   ry   rO   updatert   rr   r,   _attn_implementationgetloggerwarning_oncer   re   rv   r`   ru   rT   rk   rz   )r4   rP   r|   r_   r}   r~   rl   Zinput_shapeZhidden_shapeZquery_statesrm   rn   rL   rM   Zcache_kwargsZattention_interfacerq   ro   r7   r7   r8   r;      sB   		

zMistralAttention.forward)NN)r<   r=   r>   __doc__r#   intr+   rE   Tensorr   r   r
   
LongTensorr   r   r;   r?   r7   r7   r5   r8   rs      s(    rs   ZRMSNormc                       s.   e Zd Zd fdd	Zdd Zdd Z  ZS )	MistralRMSNormư>c                    s&   t    tt|| _|| _dS )z=
        MistralRMSNorm is equivalent to T5LayerNorm
        N)r*   r+   r   	ParameterrE   Zonesweightvariance_epsilon)r4   r-   epsr5   r7   r8   r+      s   

zMistralRMSNorm.__init__c                 C   sJ   |j }|tj}|djddd}|t|| j  }| j|| S )NrA   r@   T)Zkeepdim)	rc   rj   rE   ri   powmeanZrsqrtr   r   )r4   rP   Zinput_dtypeZvariancer7   r7   r8   r;      s
   zMistralRMSNorm.forwardc                 C   s   t | jj d| j S )Nz, eps=)tupler   rD   r   r4   r7   r7   r8   
extra_repr   s   zMistralRMSNorm.extra_repr)r   )r<   r=   r>   r+   r;   r   r?   r7   r7   r5   r8   r      s    r   c                       s   e Zd Zdedef fddZ							ddejdeej d	eej	 d
ee
 dee dee deej	 deeejejf  dee deejeeejejf  f fddZ  ZS )MistralDecoderLayerr,   rt   c                    sR   t    |j| _t||d| _t|| _t|j|jd| _	t|j|jd| _
d S )N)r,   rt   r   )r*   r+   r-   rs   	self_attnr&   mlpr   rms_norm_epsinput_layernormpost_attention_layernormr{   r5   r7   r8   r+      s   

zMistralDecoderLayer.__init__NFrP   r_   rN   r}   r   	use_cacher~   r|   rl   rR   c	                 K   st   |}
|  |}| jd||||||||d|	\}}|
| }|}
| |}| |}|
| }|f}|r8||f7 }|S )N)rP   r_   rN   r}   r   r   r~   r|   r7   )r   r   r   r   )r4   rP   r_   rN   r}   r   r   r~   r|   rl   ZresidualZself_attn_weightsoutputsr7   r7   r8   r;      s.   
	



zMistralDecoderLayer.forward)NNNFFNN)r<   r=   r>   r#   r   r+   rE   r   r   r   r
   boolr   r   r   FloatTensorr;   r?   r7   r7   r5   r8   r      s<    	
r   c                   @   sH   e Zd ZeZdZdZdgZdgZdZ	dZ
dZdZdZdZdZdd ZdS )MistralPreTrainedModelmodelTr   past_key_valuesc                 C   s   | j j}t|tjr"|jjjd|d |jd ur |jj	  d S d S t|tj
rC|jjjd|d |jd urA|jj|j 	  d S d S t|trQ|jjd d S d S )NrZ   )r   stdg      ?)r,   Zinitializer_range
isinstancer   r.   r   dataZnormal_r)   Zzero_	Embeddingpadding_idxr   Zfill_)r4   r[   r   r7   r7   r8   _init_weights  s   


z$MistralPreTrainedModel._init_weightsN)r<   r=   r>   r#   Zconfig_classbase_model_prefixZsupports_gradient_checkpointingZ_no_split_modulesZ_skip_keys_device_placementZ_supports_flash_attn_2Z_supports_sdpaZ_supports_flex_attnZ_supports_cache_classZ_supports_quantized_cacheZ_supports_static_cacheZ_supports_attention_backendr   r7   r7   r7   r8   r     s    r   c                       s8   e Zd Zddef fddZe edd Z  Z	S )MistralRotaryEmbeddingNr,   c                    s   t    t|dr|jd ur|jd|jd| _nd| _|j| _|j| _|| _	t
| j | _| | j	|\}| _| jd|dd | j| _d S )Nrope_scaling	rope_typetypedefaultinv_freqF)
persistent)r*   r+   hasattrr   r   r   Zmax_position_embeddingsZmax_seq_len_cachedZoriginal_max_seq_lenr,   r   Zrope_init_fnattention_scalingZregister_bufferr   Zoriginal_inv_freq)r4   r,   devicer   r5   r7   r8   r+   ,  s   
zMistralRotaryEmbedding.__init__c           
      C   s   | j d d d d f  |jd dd|j}|d d d d d f  }t|jjtr6|jjdkr6|jjnd}t	j
|dd+ | |  dd}t	j||fdd	}| | j }| | j }	W d    n1 smw   Y  |j|jd
|	j|jd
fS )Nr   r@   r"   ZmpscpuF)device_typeenabledrA   rB   )rc   )r   floatrS   rD   rj   r   r   r   strrE   Zautocastrh   rF   rL   r   rM   rc   )
r4   r:   rN   Zinv_freq_expandedZposition_ids_expandedr   ZfreqsZembrL   rM   r7   r7   r8   r;   =  s   0&zMistralRotaryEmbedding.forwardr9   )
r<   r=   r>   r#   r+   rE   Zno_gradr   r;   r?   r7   r7   r5   r8   r   +  s
    r   c                       s  e Zd Zdef fddZdd Zdd Zee									d!d	e	e
j d
e	e
j de	e
j de	e de	e
j de	e de	e de	e de	e
j dee defddZ	d"d
ee
jdf de
jde
jdedef
ddZed
e
jdedede
jde
jdededefdd Z  ZS )#MistralModelr,   c                    s   t     j| _ j| _t j j| j| _t	 fddt
 jD | _t j jd| _t d| _d| _|   d S )Nc                    s   g | ]}t  |qS r7   )r   ).0rt   r,   r7   r8   
<listcomp>V  s    z)MistralModel.__init__.<locals>.<listcomp>r   r   F)r*   r+   pad_token_idr   
vocab_sizer   r   r-   embed_tokensZ
ModuleListrangenum_hidden_layerslayersr   r   normr   
rotary_embgradient_checkpointing	post_initr3   r5   r   r8   r+   O  s   zMistralModel.__init__c                 C      | j S r9   r   r   r7   r7   r8   get_input_embeddings_     z!MistralModel.get_input_embeddingsc                 C   
   || _ d S r9   r   r4   r^   r7   r7   r8   set_input_embeddingsb     
z!MistralModel.set_input_embeddingsN	input_idsr_   rN   r   inputs_embedsr   r   output_hidden_statesr~   flash_attn_kwargsrR   c
                 K   s  |d ur|n| j j}|d ur|n| j j}|d ur|n| j j}|d u |d uA r*td| jr9| jr9|r9td d}t	|t
d tfsFtd|d u rO| |}|rX|d u rXt }|	d u rt|d urd| nd}tj|||jd  |jd}	|d u r}|	d}| |||	||}|}| ||}|rdnd }|rdnd }| jd | j j D ]&}|r||f7 }||f||||||	|d	|
}|d }|r||d f7 }q| |}|r||f7 }t||r|nd ||d
S )Nz:You must specify exactly one of input_ids or inputs_embedszX`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.FzBThe `past_key_values` should be either a `Cache` object or `None`.r   r"   r   r7   )r_   rN   r}   r   r   r~   r|   )last_hidden_stater   rP   
attentions)r,   r   r   r   
ValueErrorr   re   r   r   r   r   r
   r   r   get_seq_lengthrE   arangerD   r   rI   _update_causal_maskr   r   r   r   r   )r4   r   r_   rN   r   r   r   r   r   r~   r   past_seen_tokensrp   rP   r|   Zall_hidden_statesZall_self_attnsZdecoder_layerZlayer_outputsr7   r7   r8   r;   e  sx   



	


zMistralModel.forwardFr$   input_tensorc              
   C   s  | j jdkr2|d ur&|d ur&|d d df   | d k}|r&td|d ur0d|v r0|S d S | j jdkrDt|tjrBt	|}|S |d urL|
 nd}t|t}t|t}	| j jdkrs|ss|	ss|sstj|||| j j| jdrsd S |j}
t|
j}|jd	 }|	s|r| }nt|tjr|jd n|| d	 }| j||||
||jd | j |d
}| j jdkr|d ur|jjdv r|st||}|S )NZflash_attention_2r@   r   zYou are attempting to perform batched generation with padding_side='right' this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to  call `tokenizer.padding_side  = 'left'` before tokenizing the input. rZ   Zflex_attentionr   )r   Zpast_key_values_lengthr   Zis_trainingr"   )sequence_lengthtarget_lengthrc   r~   
batch_sizer,   r   )cudaZxpuZnpu)r,   r   sumitemsizer   r   rE   r   r%   r   r   r   r   Z_ignore_causal_mask_sdpar   re   rc   finfominrD   Zget_max_cache_shape5_prepare_4d_causal_attention_mask_with_cache_positionr   r   Z_unmask_unattended)r4   r_   r   r~   r   r   Zis_padding_rightr   Zusing_static_cacheZusing_sliding_window_cacherc   	min_dtyper   r   rp   r7   r7   r8   r     st   $





z MistralModel._update_causal_maskr   r   rc   r   c                 C   s  | dur|   dkr| }|S t|j}	tj||f|	||jd}tj||jd|ddk}
| }t	|ddr\|j
dur\t|trF||kr\tj||jd|dd|j
 k}|
| ||
9 }|ddddddf |ddd}| dur| }| jd |kr| ddd|f } | jd }|ddddddd|f | ddddddf |j }|d	k}|ddddddd|f ||	|ddddddd|f< |S )
a  
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

        Args:
            attention_mask (`torch.Tensor`):
                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
            sequence_length (`int`):
                The sequence length being processed.
            target_length (`int`):
                The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
            dtype (`torch.dtype`):
                The dtype to use for the 4D attention mask.
            cache_position (`torch.Tensor`):
                Indices depicting the position of the input sequence tokens in the sequence.
            batch_size (`torch.Tensor`):
                Batch size.
            config (`MistralConfig`):
                The model's configuration class
            past_key_values (`Cache`):
                The cache class that is being used currently to generate
        N   )Z
fill_valuerc   r   r   r@   r"   Zuse_sliding_windowTr   )rC   rE   r   r   fullr   r   rT   Zget_text_configru   r   r   r   Zbitwise_or_rS   clonerD   rj   Zmasked_fill)r_   r   r   rc   r~   r   r,   r   rp   r   Zdiagonal_attend_maskZtext_configZsliding_attend_maskZmask_lengthZpadding_maskr7   r7   r8   r     s@   ! 
$
6  zBMistralModel._prepare_4d_causal_attention_mask_with_cache_position	NNNNNNNNN)F)r<   r=   r>   r#   r+   r   r   r   r   r   rE   r   r   r
   r   r   r   r   r   r;   r   r   staticmethodr   rc   r   r?   r7   r7   r5   r8   r   M  s    	
d
Vr   c                   @   s   e Zd ZdS )KwargsForCausalLMN)r<   r=   r>   r7   r7   r7   r8   r   a  s    r   c                       s
  e Zd ZdgZddiZddgdgfiZ fddZdd	 Zd
d Zdd Z	dd Z
dd Zdd Zee											d%deej deej deej dee deej deej dee dee dee deej d eeejf d!ee d"efd#d$Z  ZS )&MistralForCausalLMzlm_head.weightlm_headZcolwise_reprP   logitsc                    s@   t  | t|| _|j| _tj|j|jdd| _| 	  d S r'   )
r*   r+   r   r   r   r   r.   r-   r   r   r3   r5   r7   r8   r+   j  s
   
zMistralForCausalLM.__init__c                 C      | j jS r9   r   r   r   r7   r7   r8   r   s     z'MistralForCausalLM.get_input_embeddingsc                 C      || j _d S r9   r   r   r7   r7   r8   r   v     z'MistralForCausalLM.set_input_embeddingsc                 C   r   r9   r   r   r7   r7   r8   get_output_embeddingsy  r   z(MistralForCausalLM.get_output_embeddingsc                 C   r   r9   r   )r4   Znew_embeddingsr7   r7   r8   set_output_embeddings|  r   z(MistralForCausalLM.set_output_embeddingsc                 C   r   r9   r   )r4   decoderr7   r7   r8   set_decoder  r   zMistralForCausalLM.set_decoderc                 C   r   r9   r   r   r7   r7   r8   get_decoder  r   zMistralForCausalLM.get_decoderNr   r   r_   rN   r   r   labelsr   r   r   r~   logits_to_keeprl   rR   c                 K   s   |dur|n| j j}|	dur|	n| j j}	| jd||||||||	|
d	|}|j}t|tr4t| dn|}| |dd|ddf }d}|durX| j	d||| j j
d|}t|||j|j|jdS )a  
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from transformers import AutoTokenizer, MistralForCausalLM

        >>> model = MistralForCausalLM.from_pretrained("meta-mistral/Mistral-2-7b-hf")
        >>> tokenizer = AutoTokenizer.from_pretrained("meta-mistral/Mistral-2-7b-hf")

        >>> prompt = "Hey, are you conscious? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
        ```N)	r   r_   rN   r   r   r   r   r   r~   )r   r   r   lossr   r   rP   r   r7   )r,   r   r   r   r   r   r   slicer   loss_functionr   r   r   rP   r   )r4   r   r_   rN   r   r   r   r   r   r   r~   r   rl   r   rP   Zslice_indicesr   r  r7   r7   r8   r;     s:   '
zMistralForCausalLM.forward)NNNNNNNNNNr   )r<   r=   r>   Z_tied_weights_keysZ_tp_planZ_pp_planr+   r   r   r   r   r   r   r   r   r   rE   r   r   r
   r   r   r   r   r   r   r   r;   r?   r7   r7   r5   r8   r   d  sf    		
r   c                          e Zd Z fddZdd Zdd Zee									ddee	j
 d	ee	j d
ee	j
 dee dee	j dee	j
 dee dee dee defddZ  ZS )MistralForTokenClassificationc                    s|   t  | |j| _t|| _t|dd d ur|j}nt|dd d ur'|j}nd}t	|| _
t|j|j| _|   d S )Nclassifier_dropouthidden_dropoutg?)r*   r+   
num_labelsr   r   ru   r  r  r   ZDropoutra   r.   r-   scorer   )r4   r,   r  r5   r7   r8   r+     s   
z&MistralForTokenClassification.__init__c                 C   r   r9   r   r   r7   r7   r8   r     r   z2MistralForTokenClassification.get_input_embeddingsc                 C   r   r9   r   r   r7   r7   r8   r     r   z2MistralForTokenClassification.set_input_embeddingsNr   r_   rN   r   r   r   r   r   r   rR   c
              
   C   sd   | j ||||||||	d}
|
j}| |}| |}d}|dur(| ||| j}t|||
j|
jdS )  
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        r_   rN   r   r   r   r   r   N)r  r   rP   r   )	r   r   ra   r
  r  r,   r   rP   r   )r4   r   r_   rN   r   r   r   r   r   r   r   sequence_outputr   r  r7   r7   r8   r;     s,   


z%MistralForTokenClassification.forwardr   )r<   r=   r>   r+   r   r   r   r   r   rE   r   r   r
   r   r   r   r;   r?   r7   r7   r5   r8   r    sH    	
r  a  
    The Mistral Model transformer with a sequence classification head on top (linear layer).

    [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    )Zcustom_introc                       r  ) MistralForSequenceClassificationc                    s@   t  | |j| _t|| _tj|j| jdd| _| 	  d S r'   )
r*   r+   r	  r   r   r   r.   r-   r
  r   r3   r5   r7   r8   r+   '  s
   
z)MistralForSequenceClassification.__init__c                 C   r   r9   r   r   r7   r7   r8   r   0  r   z5MistralForSequenceClassification.get_input_embeddingsc                 C   r   r9   r   r   r7   r7   r8   r   3  r   z5MistralForSequenceClassification.set_input_embeddingsNr   r_   rN   r   r   r   r   r   r   rR   c
              
   C   s(  | j ||||||||	d}
|
j}| |}|dur|jd }n|jd }| jjdu r2|dkr2td| jjdu r;d}n1|dur`|| jjk|jt	j
}t	j|jd |jt	j
d}|| d}nd}t| jj d |t	j||jd	|f }d}|dur| j|||| jd
}t|||
j|
j|
jdS )r  r  Nr   r"   z=Cannot handle batch sizes > 1 if no padding token is defined.r@   )r   rc   z will not detect padding tokens in `inputs_embeds`. Results may be unexpected if using padding tokens in conjunction with `inputs_embeds.`r   )r   r   pooled_logitsr,   r  )r   r   r
  rD   r,   r   r   rj   r   rE   Zint32r   Zargmaxr   r   r6   r<   r  r   r   rP   r   )r4   r   r_   rN   r   r   r   r   r   r   Ztransformer_outputsrP   r   r   Zlast_non_pad_tokenZnon_pad_maskZtoken_indicesr  r  r7   r7   r8   r;   6  sL   


z(MistralForSequenceClassification.forwardr   )r<   r=   r>   r+   r   r   r   r   r   rE   r   r   r
   r   r   r   r;   r?   r7   r7   r5   r8   r    sH    		
r  c                       s   e Zd ZdZ fddZdd Zdd Zee									dd	e	e
j d
e	e
j de	e
j de	eeee
j f  de	e
j de	e
j de	e
j de	e de	e defddZ  ZS )MistralForQuestionAnsweringr   c                    s2   t  | t|jd| _t|| _|   d S )NrA   )	r*   r+   r   r.   r-   
qa_outputsr   r   r   r3   r5   r7   r8   r+     s   
z$MistralForQuestionAnswering.__init__c                 C   r   r9   r   r   r7   r7   r8   r     r   z0MistralForQuestionAnswering.get_input_embeddingsc                 C   r   r9   r   r   r7   r7   r8   r     r   z0MistralForQuestionAnswering.set_input_embeddingsNr   r_   rN   r   r   start_positionsend_positionsr   r   rR   c
              	   K   s   | j |||||||	d}|j}| |}|jddd\}}|d }|d }d}|durA|durA| j||||fi |
}t||||j|j	dS )a  
        start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
            are not taken into account for computing the loss.
        )r_   rN   r   r   r   r   r"   r@   rB   N)r  start_logits
end_logitsrP   r   )
r   r   r  splitZsqueezerk   r  r   rP   r   )r4   r   r_   rN   r   r   r  r  r   r   rl   r   r  r   r  r  r  r7   r7   r8   r;     s0   

z#MistralForQuestionAnswering.forwardr   )r<   r=   r>   r   r+   r   r   r   r   r   rE   r   r   r   r
   r   r   r   r   r;   r?   r7   r7   r5   r8   r  |  sJ    	
r  )r   r  r   r   r  r  )Nr"   )rZ   )Ktypingr   r   r   r   r   rE   r   Zactivationsr	   Zcache_utilsr
   r   r   r   Z
generationr   Zintegrationsr   Zmodeling_attn_mask_utilsr   Zmodeling_flash_attention_utilsr   Zmodeling_layersr   Zmodeling_outputsr   r   r   r   r   Zmodeling_rope_utilsr   r   Zmodeling_utilsr   r   Zprocessing_utilsr   utilsr   r   r   r    r!   Zconfiguration_mistralr#   Z!torch.nn.attention.flex_attentionr$   Zintegrations.flex_attentionr%   Z
get_loggerr<   r   Moduler&   rH   rO   r   r   rY   r   rr   rs   r   r   r   r   r   r   r   r  r  r  __all__r7   r7   r7   r8   <module>   s~   


D3"  lFVI