o
    Zh                     @   s:  d Z ddlZddlZddlmZmZmZ ddlZddlZddlm	Z	 ddl
mZmZmZ ddlmZ ddlmZmZmZmZmZmZ dd	lmZmZmZmZ dd
lmZmZ ddlm Z  e!e"Z#G dd de	j$Z%d8ddZ&G dd de	j$Z'G dd de	j$Z(G dd de	j$Z)G dd de	j$Z*G dd de	j$Z+G dd de	j$Z,G dd de	j$Z-G dd  d e	j$Z.G d!d" d"e	j$Z/d#e/iZ0G d$d% d%e	j$Z1G d&d' d'e	j$Z2G d(d) d)e	j$Z3eG d*d+ d+eZ4eG d,d- d-e4Z5eG d.d/ d/e4Z6ed0d1G d2d3 d3e4Z7ed4d1G d5d6 d6e4Z8g d7Z9dS )9zPyTorch MarkupLM model.    N)OptionalTupleUnion)nn)BCEWithLogitsLossCrossEntropyLossMSELoss   )ACT2FN))BaseModelOutputWithPastAndCrossAttentions,BaseModelOutputWithPoolingAndCrossAttentionsMaskedLMOutputQuestionAnsweringModelOutputSequenceClassifierOutputTokenClassifierOutput)PreTrainedModelapply_chunking_to_forward find_pruneable_heads_and_indicesprune_linear_layer)auto_docstringlogging   )MarkupLMConfigc                       s*   e Zd ZdZ fddZdddZ  ZS )XPathEmbeddingszConstruct the embeddings from xpath tags and subscripts.

    We drop tree-id in this version, as its info can be covered by xpath.
    c                    s   t t|    j| _t j| j  j| _t	 j
| _t | _t j| j d j | _td j  j| _t fddt| jD | _t fddt| jD | _d S )N   c                       g | ]
}t  j jqS  )r   	EmbeddingZmax_xpath_tag_unit_embeddingsxpath_unit_hidden_size.0_configr   ]/var/www/auris/lib/python3.10/site-packages/transformers/models/markuplm/modeling_markuplm.py
<listcomp>C       z,XPathEmbeddings.__init__.<locals>.<listcomp>c                    r   r   )r   r   Zmax_xpath_subs_unit_embeddingsr   r   r"   r   r$   r%   J   r&   )superr   __init__	max_depthr   Linearr   hidden_sizeZxpath_unitseq2_embeddingsDropouthidden_dropout_probdropoutZReLU
activationxpath_unitseq2_inner	inner2emb
ModuleListrangexpath_tag_sub_embeddingsxpath_subs_sub_embeddingsselfr#   	__class__r"   r$   r(   6   s"   



zXPathEmbeddings.__init__Nc              	   C   s   g }g }t | jD ](}|| j| |d d d d |f  || j| |d d d d |f  q	tj|dd}tj|dd}|| }| | | 	| 
|}|S )Ndim)r3   r)   appendr4   r5   torchcatr1   r.   r/   r0   )r7   xpath_tags_seqxpath_subs_seqZxpath_tags_embeddingsZxpath_subs_embeddingsixpath_embeddingsr   r   r$   forwardP   s   &(zXPathEmbeddings.forward)NN)__name__
__module____qualname____doc__r(   rD   __classcell__r   r   r8   r$   r   0   s    r   c                 C   s6   |  | }tj|dd|| | }| | S )a  
    Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
    are ignored. This is modified from fairseq's `utils.make_positions`.

    Args:
        x: torch.Tensor x:

    Returns: torch.Tensor
    r   r;   )neintr>   ZcumsumZtype_aslong)	input_idspadding_idxpast_key_values_lengthmaskZincremental_indicesr   r   r$   "create_position_ids_from_input_idsc   s   rQ   c                       s@   e Zd ZdZ fddZdd Z							d
dd	Z  ZS )MarkupLMEmbeddingszGConstruct the embeddings from word, position and token_type embeddings.c                    s   t t|   || _tj|j|j|jd| _	t|j
|j| _|j| _t|| _t|j|j| _tj|j|jd| _t|j| _| jdt|j
ddd |j| _tj|j
|j| jd| _d S )N)rN   Zepsposition_ids)r   r:   F)
persistent)r'   rR   r(   r#   r   r   
vocab_sizer+   Zpad_token_idword_embeddingsmax_position_embeddingsposition_embeddingsr)   r   rC   Ztype_vocab_sizetoken_type_embeddings	LayerNormlayer_norm_epsr,   r-   r.   Zregister_bufferr>   arangeexpandrN   r6   r8   r   r$   r(   v   s    
zMarkupLMEmbeddings.__init__c                 C   sN   |  dd }|d }tj| jd || j d tj|jd}|d|S )z
        We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.

        Args:
            inputs_embeds: torch.Tensor

        Returns: torch.Tensor
        Nr:   r   dtypedevicer   )sizer>   r]   rN   rL   ra   	unsqueezer^   )r7   inputs_embedsinput_shapeZsequence_lengthrT   r   r   r$   &create_position_ids_from_inputs_embeds   s   	z9MarkupLMEmbeddings.create_position_ids_from_inputs_embedsNr   c                 C   s<  |d ur	|  }n|  d d }|d ur|jn|j}	|d u r0|d ur+t|| j|}n| |}|d u r=tj|tj|	d}|d u rF| |}|d u r_| j	j
tjtt|| jg tj|	d }|d u rx| j	jtjtt|| jg tj|	d }|}
| |}| |}| ||}|
| | | }| |}| |}|S )Nr:   r_   )rb   ra   rQ   rN   rf   r>   zerosrL   rW   r#   Z
tag_pad_idonestuplelistr)   Zsubs_pad_idrY   rZ   rC   r[   r.   )r7   rM   r@   rA   token_type_idsrT   rd   rO   re   ra   Zwords_embeddingsrY   rZ   rC   
embeddingsr   r   r$   rD      s8   









zMarkupLMEmbeddings.forward)NNNNNNr   )rE   rF   rG   rH   r(   rf   rD   rI   r   r   r8   r$   rR   s   s    rR   c                       8   e Zd Z fddZdejdejdejfddZ  ZS )MarkupLMSelfOutputc                    sB   t    t|j|j| _tj|j|jd| _t|j	| _
d S NrS   )r'   r(   r   r*   r+   denser[   r\   r,   r-   r.   r6   r8   r   r$   r(         
zMarkupLMSelfOutput.__init__hidden_statesinput_tensorreturnc                 C   &   |  |}| |}| || }|S Nrp   r.   r[   r7   rr   rs   r   r   r$   rD         

zMarkupLMSelfOutput.forwardrE   rF   rG   r(   r>   TensorrD   rI   r   r   r8   r$   rn          $rn   c                       2   e Zd Z fddZdejdejfddZ  ZS )MarkupLMIntermediatec                    sD   t    t|j|j| _t|jt	rt
|j | _d S |j| _d S rv   )r'   r(   r   r*   r+   intermediate_sizerp   
isinstance
hidden_actstrr
   intermediate_act_fnr6   r8   r   r$   r(      s
   
zMarkupLMIntermediate.__init__rr   rt   c                 C      |  |}| |}|S rv   )rp   r   r7   rr   r   r   r$   rD         

zMarkupLMIntermediate.forwardrz   r   r   r8   r$   r~      s    r~   c                       rm   )MarkupLMOutputc                    sB   t    t|j|j| _tj|j|jd| _t	|j
| _d S ro   )r'   r(   r   r*   r   r+   rp   r[   r\   r,   r-   r.   r6   r8   r   r$   r(      rq   zMarkupLMOutput.__init__rr   rs   rt   c                 C   ru   rv   rw   rx   r   r   r$   rD      ry   zMarkupLMOutput.forwardrz   r   r   r8   r$   r      r|   r   c                       r}   )MarkupLMPoolerc                    s*   t    t|j|j| _t | _d S rv   )r'   r(   r   r*   r+   rp   ZTanhr/   r6   r8   r   r$   r(     s   
zMarkupLMPooler.__init__rr   rt   c                 C   s(   |d d df }|  |}| |}|S )Nr   )rp   r/   )r7   rr   Zfirst_token_tensorpooled_outputr   r   r$   rD   
  s   

zMarkupLMPooler.forwardrz   r   r   r8   r$   r     s    r   c                       r}   )MarkupLMPredictionHeadTransformc                    sV   t    t|j|j| _t|jtrt	|j | _
n|j| _
tj|j|jd| _d S ro   )r'   r(   r   r*   r+   rp   r   r   r   r
   transform_act_fnr[   r\   r6   r8   r   r$   r(     s   
z(MarkupLMPredictionHeadTransform.__init__rr   rt   c                 C   s"   |  |}| |}| |}|S rv   )rp   r   r[   r   r   r   r$   rD     s   


z'MarkupLMPredictionHeadTransform.forwardrz   r   r   r8   r$   r     s    	r   c                       s,   e Zd Z fddZdd Zdd Z  ZS )MarkupLMLMPredictionHeadc                    sL   t    t|| _tj|j|jdd| _t	t
|j| _| j| j_d S )NF)bias)r'   r(   r   	transformr   r*   r+   rV   decoder	Parameterr>   rg   r   r6   r8   r   r$   r(   '  s
   

z!MarkupLMLMPredictionHead.__init__c                 C   s   | j | j_ d S rv   )r   r   r7   r   r   r$   _tie_weights4  s   z%MarkupLMLMPredictionHead._tie_weightsc                 C   r   rv   )r   r   r   r   r   r$   rD   7  r   z MarkupLMLMPredictionHead.forward)rE   rF   rG   r(   r   rD   rI   r   r   r8   r$   r   &  s    r   c                       r}   )MarkupLMOnlyMLMHeadc                    s   t    t|| _d S rv   )r'   r(   r   predictionsr6   r8   r   r$   r(   ?  s   
zMarkupLMOnlyMLMHead.__init__sequence_outputrt   c                 C   s   |  |}|S rv   )r   )r7   r   prediction_scoresr   r   r$   rD   C  s   
zMarkupLMOnlyMLMHead.forwardrz   r   r   r8   r$   r   >  s    r   c                       s   e Zd Zd fdd	ZdejdejfddZ						dd	ejd
eej deej deej deej dee	e	ej   dee
 de	ej fddZ  ZS )MarkupLMSelfAttentionNc                    s   t    |j|j dkrt|dstd|j d|j d|j| _t|j|j | _| j| j | _t	
|j| j| _t	
|j| j| _t	
|j| j| _t	|j| _|p\t|dd| _| jdksh| jd	kry|j| _t	d
|j d | j| _|j| _d S )Nr   Zembedding_sizezThe hidden size (z6) is not a multiple of the number of attention heads ()position_embedding_typeabsoluterelative_keyrelative_key_query   r   )r'   r(   r+   num_attention_headshasattr
ValueErrorrK   attention_head_sizeall_head_sizer   r*   querykeyvaluer,   Zattention_probs_dropout_probr.   getattrr   rX   r   distance_embedding
is_decoderr7   r#   r   r8   r   r$   r(   J  s*   

zMarkupLMSelfAttention.__init__xrt   c                 C   s6   |  d d | j| jf }||}|ddddS )Nr:   r   r   r   r	   )rb   r   r   viewpermute)r7   r   Znew_x_shaper   r   r$   transpose_for_scoresd  s   
z*MarkupLMSelfAttention.transpose_for_scoresFrr   attention_mask	head_maskencoder_hidden_statesencoder_attention_maskpast_key_valueoutput_attentionsc                 C   s  |  |}|d u}	|	r|d ur|d }
|d }|}nP|	r/| | |}
| | |}|}n;|d urZ| | |}
| | |}tj|d |
gdd}
tj|d |gdd}n| | |}
| | |}| |}|d u}| jrz|
|f}t||
dd}| j	dks| j	dkr	|j
d |
j
d }}|rtj|d tj|jd	dd}ntj|tj|jd	dd}tj|tj|jd	dd}|| }| || j d }|j|jd
}| j	dkrtd||}|| }n| j	dkr	td||}td|
|}|| | }|t| j }|d ur|| }tjj|dd}| |}|d ur0|| }t||}|dddd }| d d | jf }||}|rX||fn|f}| jrd||f }|S )Nr   r   r   r;   r:   r   r   r_   r`   zbhld,lrd->bhlrzbhrd,lrd->bhlrr	   ) r   r   r   r   r>   r?   r   matmulZ	transposer   shapeZtensorrL   ra   r   r]   r   rX   tor`   Zeinsummathsqrtr   r   Z
functionalZsoftmaxr.   r   
contiguousrb   r   )r7   rr   r   r   r   r   r   r   Zmixed_query_layerZis_cross_attentionZ	key_layerZvalue_layerZquery_layer	use_cacheZattention_scoresZquery_lengthZ
key_lengthZposition_ids_lZposition_ids_rZdistanceZpositional_embeddingZrelative_position_scoresZrelative_position_scores_queryZrelative_position_scores_keyZattention_probsZcontext_layerZnew_context_layer_shapeoutputsr   r   r$   rD   i  sn   









zMarkupLMSelfAttention.forwardrv   NNNNNF)rE   rF   rG   r(   r>   r{   r   r   FloatTensorr   boolrD   rI   r   r   r8   r$   r   I  s4    	r   eagerc                       s   e Zd Zd fdd	Zdd Z						ddejdeej d	eej d
eej deej dee	e	ej   dee
 de	ej fddZ  ZS )MarkupLMAttentionNc                    s4   t    t|j ||d| _t|| _t | _d S )Nr   )	r'   r(   MARKUPLM_SELF_ATTENTION_CLASSESZ_attn_implementationr7   rn   outputsetpruned_headsr   r8   r   r$   r(     s   

zMarkupLMAttention.__init__c                 C   s   t |dkrd S t|| jj| jj| j\}}t| jj|| j_t| jj|| j_t| jj	|| j_	t| j
j|dd| j
_| jjt | | j_| jj| jj | j_| j|| _d S )Nr   r   r;   )lenr   r7   r   r   r   r   r   r   r   r   rp   r   union)r7   headsindexr   r   r$   prune_heads  s   zMarkupLMAttention.prune_headsFrr   r   r   r   r   r   r   rt   c              	   C   s<   |  |||||||}| |d |}	|	f|dd   }
|
S )Nr   r   )r7   r   )r7   rr   r   r   r   r   r   r   Zself_outputsattention_outputr   r   r   r$   rD     s   
	zMarkupLMAttention.forwardrv   r   )rE   rF   rG   r(   r   r>   r{   r   r   r   r   rD   rI   r   r   r8   r$   r     s4    	r   c                       s   e Zd Z fddZ						ddejdeej deej deej d	eej d
eeeej   dee	 deej fddZ
dd Z  ZS )MarkupLMLayerc                    sr   t    |j| _d| _t|| _|j| _|j| _| jr-| js&t|  dt|dd| _	t
|| _t|| _d S )Nr   z> should be used as a decoder model if cross attention is addedr   r   )r'   r(   chunk_size_feed_forwardseq_len_dimr   	attentionr   add_cross_attentionr   crossattentionr~   intermediater   r   r6   r8   r   r$   r(   
  s   


zMarkupLMLayer.__init__NFrr   r   r   r   r   r   r   rt   c              	   C   s  |d ur
|d d nd }| j |||||d}	|	d }
| jr(|	dd }|	d }n|	dd  }d }| jro|d urot| dsDtd|  d|d urN|d	d  nd }| |
||||||}|d }
||dd  }|d }|| }t| j| j| j|
}|f| }| jr||f }|S )
Nr   )r   r   r   r   r:   r   z'If `encoder_hidden_states` are passed, z` has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`r   )	r   r   r   r   r   r   feed_forward_chunkr   r   )r7   rr   r   r   r   r   r   r   Zself_attn_past_key_valueZself_attention_outputsr   r   Zpresent_key_valueZcross_attn_present_key_valueZcross_attn_past_key_valueZcross_attention_outputslayer_outputr   r   r$   rD     sP   


	

zMarkupLMLayer.forwardc                 C   s   |  |}| ||}|S rv   )r   r   )r7   r   Zintermediate_outputr   r   r   r$   r   Y  s   
z MarkupLMLayer.feed_forward_chunkr   )rE   rF   rG   r(   r>   r{   r   r   r   r   rD   r   rI   r   r   r8   r$   r   	  s4    	
Ar   c                       s   e Zd Z fddZ									ddejdeej deej d	eej d
eej deeeej   dee	 dee	 dee	 dee	 de
eej ef fddZ  ZS )MarkupLMEncoderc                    s:   t     | _t fddt jD | _d| _d S )Nc                    s   g | ]}t  qS r   )r   r   r"   r   r$   r%   d  s    z,MarkupLMEncoder.__init__.<locals>.<listcomp>F)	r'   r(   r#   r   r2   r3   num_hidden_layerslayergradient_checkpointingr6   r8   r"   r$   r(   a  s   
 
zMarkupLMEncoder.__init__NFTrr   r   r   r   r   past_key_valuesr   r   output_hidden_statesreturn_dictrt   c                 C   s^  |	rdnd }|r
dnd }|r| j jrdnd }| jr%| jr%|r%td d}|r)dnd }t| jD ]^\}}|	r;||f }|d urC|| nd }|d urM|| nd }| jrc| jrc| |j	|||||||}n
||||||||}|d }|rz||d f7 }|r||d f }| j jr||d f }q0|	r||f }|
st
dd	 |||||fD S t|||||d
S )Nr   zZ`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...Fr   r:   r   r   c                 s   s    | ]	}|d ur|V  qd S rv   r   )r    vr   r   r$   	<genexpr>  s    z*MarkupLMEncoder.forward.<locals>.<genexpr>)last_hidden_stater   rr   
attentionscross_attentions)r#   r   r   ZtrainingloggerZwarning_once	enumerater   Z_gradient_checkpointing_func__call__ri   r   )r7   rr   r   r   r   r   r   r   r   r   r   Zall_hidden_statesZall_self_attentionsZall_cross_attentionsZnext_decoder_cacherB   Zlayer_moduleZlayer_head_maskr   Zlayer_outputsr   r   r$   rD   g  sz   


zMarkupLMEncoder.forward)	NNNNNNFFT)rE   rF   rG   r(   r>   r{   r   r   r   r   r   r   rD   rI   r   r   r8   r$   r   `  sD    		
r   c                       sD   e Zd ZeZdZdd Zedee	e
ejf  f fddZ  ZS )MarkupLMPreTrainedModelmarkuplmc                 C   s   t |tjr |jjjd| jjd |jdur|jj	  dS dS t |tj
rC|jjjd| jjd |jdurA|jj|j 	  dS dS t |tjrX|jj	  |jjd dS t |tre|jj	  dS dS )zInitialize the weightsg        )meanZstdN      ?)r   r   r*   weightdataZnormal_r#   Zinitializer_ranger   Zzero_r   rN   r[   Zfill_r   )r7   moduler   r   r$   _init_weights  s    


z%MarkupLMPreTrainedModel._init_weightspretrained_model_name_or_pathc                    s   t t| j|g|R i |S rv   )r'   r   from_pretrained)clsr   Z
model_argskwargsr8   r   r$   r     s   
z'MarkupLMPreTrainedModel.from_pretrained)rE   rF   rG   r   Zconfig_classZbase_model_prefixr   classmethodr   r   r   osPathLiker   rI   r   r   r8   r$   r     s    *r   c                       s   e Zd Zd fdd	Zdd Zdd Zdd	 Ze	
	
	
	
	
	
	
	
	
	
	
ddee	j
 dee	j
 dee	j
 dee	j dee	j
 dee	j
 dee	j dee	j dee dee dee deeef fddZdd Z  ZS )MarkupLMModelTc                    sD   t  | || _t|| _t|| _|rt|nd| _| 	  dS )zv
        add_pooling_layer (bool, *optional*, defaults to `True`):
            Whether to add a pooling layer
        N)
r'   r(   r#   rR   rl   r   encoderr   pooler	post_init)r7   r#   add_pooling_layerr8   r   r$   r(     s   

zMarkupLMModel.__init__c                 C   s   | j jS rv   rl   rW   r   r   r   r$   get_input_embeddings  s   z"MarkupLMModel.get_input_embeddingsc                 C   s   || j _d S rv   r   )r7   r   r   r   r$   set_input_embeddings  s   z"MarkupLMModel.set_input_embeddingsc                 C   s*   |  D ]\}}| jj| j| qdS )z
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        N)itemsr   r   r   r   )r7   Zheads_to_pruner   r   r   r   r$   _prune_heads  s   zMarkupLMModel._prune_headsNrM   r@   rA   r   rk   rT   r   rd   r   r   r   rt   c                 C   s  |	dur|	n| j j}	|
dur|
n| j j}
|dur|n| j j}|dur*|dur*td|dur9| || | }n|durF| dd }ntd|durQ|jn|j}|du r_tj	||d}|du rltj
|tj|d}|dd}|j| jd	}d
| d }|dur| dkr|dddd}|| j jdddd}n| dkr|ddd}|jt|  jd	}ndg| j j }| j||||||d}| j||||	|
|d}|d }| jdur| |nd}|s||f|dd  S t|||j|j|jdS )a  
        xpath_tags_seq (`torch.LongTensor` of shape `(batch_size, sequence_length, config.max_depth)`, *optional*):
            Tag IDs for each token in the input sequence, padded up to config.max_depth.
        xpath_subs_seq (`torch.LongTensor` of shape `(batch_size, sequence_length, config.max_depth)`, *optional*):
            Subscript IDs for each token in the input sequence, padded up to config.max_depth.

        Examples:

        ```python
        >>> from transformers import AutoProcessor, MarkupLMModel

        >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base")
        >>> model = MarkupLMModel.from_pretrained("microsoft/markuplm-base")

        >>> html_string = "<html> <head> <title>Page Title</title> </head> </html>"

        >>> encoding = processor(html_string, return_tensors="pt")

        >>> outputs = model(**encoding)
        >>> last_hidden_states = outputs.last_hidden_state
        >>> list(last_hidden_states.shape)
        [1, 4, 768]
        ```NzDYou cannot specify both input_ids and inputs_embeds at the same timer:   z5You have to specify either input_ids or inputs_embeds)ra   r_   r   r   r   r   g     r   )rM   r@   rA   rT   rk   rd   )r   r   r   r   )r   Zpooler_outputrr   r   r   )r#   r   r   use_return_dictr   Z%warn_if_padding_and_no_attention_maskrb   ra   r>   rh   rg   rL   rc   r   r`   r<   r^   r   next
parametersrl   r   r   r   rr   r   r   )r7   rM   r@   rA   r   rk   rT   r   rd   r   r   r   re   ra   Zextended_attention_maskZembedding_outputZencoder_outputsr   r   r   r   r$   rD     sn   &
zMarkupLMModel.forwardc                    s.   d}|D ]}|t  fdd|D f7 }q|S )Nr   c                 3   s$    | ]}| d  |jV  qdS )r   N)Zindex_selectr   ra   )r    Z
past_statebeam_idxr   r$   r   m  s   " z/MarkupLMModel._reorder_cache.<locals>.<genexpr>)ri   )r7   r   r  Zreordered_pastZ
layer_pastr   r  r$   _reorder_cachei  s   zMarkupLMModel._reorder_cache)T)NNNNNNNNNNN)rE   rF   rG   r(   r   r   r   r   r   r>   Z
LongTensorr   r   r   r   r   rD   r  rI   r   r   r8   r$   r     sV    	

kr   c                        s   e Zd Z fddZe													ddeej deej deej deej deej d	eej d
eej deej deej deej dee dee dee de	e
ej ef fddZ  ZS )MarkupLMForQuestionAnsweringc                    s@   t  | |j| _t|dd| _t|j|j| _| 	  d S NF)r   )
r'   r(   
num_labelsr   r   r   r*   r+   
qa_outputsr   r6   r8   r   r$   r(   u  s
   z%MarkupLMForQuestionAnswering.__init__NrM   r@   rA   r   rk   rT   r   rd   start_positionsend_positionsr   r   r   rt   c                 C   sL  |dur|n| j j}| j|||||||||||d}|d }| |}|jddd\}}|d }|d }d}|	dur|
durt|	 dkrQ|	d}	t|
 dkr^|
d}
|d}|		d| |
	d| t
|d}|||	}|||
}|| d }|s||f|dd  }|dur|f| S |S t||||j|jd	S )
ae  
        xpath_tags_seq (`torch.LongTensor` of shape `(batch_size, sequence_length, config.max_depth)`, *optional*):
            Tag IDs for each token in the input sequence, padded up to config.max_depth.
        xpath_subs_seq (`torch.LongTensor` of shape `(batch_size, sequence_length, config.max_depth)`, *optional*):
            Subscript IDs for each token in the input sequence, padded up to config.max_depth.

        Examples:

        ```python
        >>> from transformers import AutoProcessor, MarkupLMForQuestionAnswering
        >>> import torch

        >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base-finetuned-websrc")
        >>> model = MarkupLMForQuestionAnswering.from_pretrained("microsoft/markuplm-base-finetuned-websrc")

        >>> html_string = "<html> <head> <title>My name is Niels</title> </head> </html>"
        >>> question = "What's his name?"

        >>> encoding = processor(html_string, questions=question, return_tensors="pt")

        >>> with torch.no_grad():
        ...     outputs = model(**encoding)

        >>> answer_start_index = outputs.start_logits.argmax()
        >>> answer_end_index = outputs.end_logits.argmax()

        >>> predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1]
        >>> processor.decode(predict_answer_tokens).strip()
        'Niels'
        ```N
r@   rA   r   rk   rT   r   rd   r   r   r   r   r   r:   r;   )Zignore_indexr   )lossstart_logits
end_logitsrr   r   )r#   r   r   r  splitsqueezer   r   rb   Zclamp_r   r   rr   r   )r7   rM   r@   rA   r   rk   rT   r   rd   r	  r
  r   r   r   r   r   logitsr  r  Z
total_lossZignored_indexloss_fctZ
start_lossZend_lossr   r   r   r$   rD     sT   /






z$MarkupLMForQuestionAnswering.forward)NNNNNNNNNNNNN)rE   rF   rG   r(   r   r   r>   r{   r   r   r   r   rD   rI   r   r   r8   r$   r  r  sZ    
	
r  zC
    MarkupLM Model with a `token_classification` head on top.
    )Zcustom_introc                          e Zd Z fddZe												ddeej deej deej deej deej d	eej d
eej deej deej dee dee dee de	e
ej ef fddZ  ZS )MarkupLMForTokenClassificationc                    sb   t  | |j| _t|dd| _|jd ur|jn|j}t|| _	t
|j|j| _|   d S r  )r'   r(   r  r   r   classifier_dropoutr-   r   r,   r.   r*   r+   
classifierr   r7   r#   r  r8   r   r$   r(     s   z'MarkupLMForTokenClassification.__init__NrM   r@   rA   r   rk   rT   r   rd   labelsr   r   r   rt   c                 C   s   |dur|n| j j}| j|||||||||
||d}|d }| |}d}|	dur:t }||d| j j|	d}|sP|f|dd  }|durN|f| S |S t|||j|j	dS )a  
        xpath_tags_seq (`torch.LongTensor` of shape `(batch_size, sequence_length, config.max_depth)`, *optional*):
            Tag IDs for each token in the input sequence, padded up to config.max_depth.
        xpath_subs_seq (`torch.LongTensor` of shape `(batch_size, sequence_length, config.max_depth)`, *optional*):
            Subscript IDs for each token in the input sequence, padded up to config.max_depth.
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.

        Examples:

        ```python
        >>> from transformers import AutoProcessor, AutoModelForTokenClassification
        >>> import torch

        >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base")
        >>> processor.parse_html = False
        >>> model = AutoModelForTokenClassification.from_pretrained("microsoft/markuplm-base", num_labels=7)

        >>> nodes = ["hello", "world"]
        >>> xpaths = ["/html/body/div/li[1]/div/span", "/html/body/div/li[1]/div/span"]
        >>> node_labels = [1, 2]
        >>> encoding = processor(nodes=nodes, xpaths=xpaths, node_labels=node_labels, return_tensors="pt")

        >>> with torch.no_grad():
        ...     outputs = model(**encoding)

        >>> loss = outputs.loss
        >>> logits = outputs.logits
        ```Nr  r   r:   r   r  r  rr   r   )
r#   r   r   r  r   r   r  r   rr   r   )r7   rM   r@   rA   r   rk   rT   r   rd   r  r   r   r   r   r   r   r  r  r   r   r   r$   rD     s@   -
z&MarkupLMForTokenClassification.forwardNNNNNNNNNNNN)rE   rF   rG   r(   r   r   r>   r{   r   r   r   r   rD   rI   r   r   r8   r$   r    sT    	
r  z
    MarkupLM Model transformer with a sequence classification/regression head on top (a linear layer on top of the
    pooled output) e.g. for GLUE tasks.
    c                       r  )!MarkupLMForSequenceClassificationc                    sd   t  | |j| _|| _t|| _|jd ur|jn|j}t	|| _
t|j|j| _|   d S rv   )r'   r(   r  r#   r   r   r  r-   r   r,   r.   r*   r+   r  r   r  r8   r   r$   r(   T  s   
z*MarkupLMForSequenceClassification.__init__NrM   r@   rA   r   rk   rT   r   rd   r  r   r   r   rt   c                 C   sv  |dur|n| j j}| j|||||||||
||d}|d }| |}| |}d}|	dur| j jdu rX| jdkr>d| j _n| jdkrT|	jtj	ksO|	jtj
krTd| j _nd| j _| j jdkrvt }| jdkrp|| |	 }n+|||	}n%| j jdkrt }||d| j|	d}n| j jdkrt }|||	}|s|f|dd  }|dur|f| S |S t|||j|jd	S )
a  
        xpath_tags_seq (`torch.LongTensor` of shape `(batch_size, sequence_length, config.max_depth)`, *optional*):
            Tag IDs for each token in the input sequence, padded up to config.max_depth.
        xpath_subs_seq (`torch.LongTensor` of shape `(batch_size, sequence_length, config.max_depth)`, *optional*):
            Subscript IDs for each token in the input sequence, padded up to config.max_depth.
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).

        Examples:

        ```python
        >>> from transformers import AutoProcessor, AutoModelForSequenceClassification
        >>> import torch

        >>> processor = AutoProcessor.from_pretrained("microsoft/markuplm-base")
        >>> model = AutoModelForSequenceClassification.from_pretrained("microsoft/markuplm-base", num_labels=7)

        >>> html_string = "<html> <head> <title>Page Title</title> </head> </html>"
        >>> encoding = processor(html_string, return_tensors="pt")

        >>> with torch.no_grad():
        ...     outputs = model(**encoding)

        >>> loss = outputs.loss
        >>> logits = outputs.logits
        ```Nr  r   Z
regressionZsingle_label_classificationZmulti_label_classificationr:   r   r  )r#   r   r   r.   r  Zproblem_typer  r`   r>   rL   rK   r   r  r   r   r   r   rr   r   )r7   rM   r@   rA   r   rk   rT   r   rd   r  r   r   r   r   r   r  r  r  r   r   r   r$   rD   c  sZ   ,



"


z)MarkupLMForSequenceClassification.forwardr  )rE   rF   rG   r(   r   r   r>   r{   r   r   r   r   rD   rI   r   r   r8   r$   r  L  sT    	
r  )r  r  r  r   r   )r   ):rH   r   r   typingr   r   r   r>   Ztorch.utils.checkpointr   Ztorch.nnr   r   r   Zactivationsr
   Zmodeling_outputsr   r   r   r   r   r   Zmodeling_utilsr   r   r   r   utilsr   r   Zconfiguration_markuplmr   Z
get_loggerrE   r   Moduler   rQ   rR   rn   r~   r   r   r   r   r   r   r   r   r   r   r   r   r  r  r  __all__r   r   r   r$   <module>   s^    

3c 4W] pdt