o
    Zh%                     @   s   d Z ddlmZmZ ddlmZ ddlmZmZm	Z	 ddl
mZmZmZmZ ddlmZmZ ddlmZ eeZG d	d
 d
eddZG dd deZdgZdS )z
Processor class for Llava.
    )ListUnion   )BatchFeature)
ImageInputget_image_sizeto_numpy_array)ProcessingKwargsProcessorMixinUnpack!_validate_images_text_input_order)PreTokenizedInput	TextInput)loggingc                   @   s   e Zd Zddii dZdS )LlavaProcessorKwargspaddingF)text_kwargsimages_kwargsN)__name__
__module____qualname__	_defaults r   r   Y/var/www/auris/lib/python3.10/site-packages/transformers/models/llava/processing_llava.pyr      s
    
r   F)totalc                
       s   e Zd ZdZddgZg dZdZdZ								d fd
d	Z				dde	de
eeee ee f dee defddZdd Zdd Zedd Z  ZS )LlavaProcessoram  
    Constructs a LLaVa processor which wraps a LLaVa image processor and a LLaMa tokenizer into a single processor.

    [`LlavaProcessor`] offers all the functionalities of [`LlavaImageProcessor`] and [`LlamaTokenizerFast`]. See the
    [`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information.

    Args:
        image_processor ([`LlavaImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`LlamaTokenizerFast`], *optional*):
            The tokenizer is a required input.
        patch_size (`int`, *optional*):
            Patch size from the vision tower.
        vision_feature_select_strategy (`str`, *optional*):
            The feature selection strategy used to select the vision feature from the vision backbone.
            Should be same as in model's config
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
        image_token (`str`, *optional*, defaults to `"<image>"`):
            Special token used to denote image location.
        num_additional_image_tokens (`int`, *optional*, defaults to 0):
            Number of additional tokens added to the image embeddings, such as CLS (+1). If the backbone has no CLS or other
            extra tokens appended, no need to set this arg.
    image_processor	tokenizer)chat_template
patch_sizevision_feature_select_strategyimage_tokennum_additional_image_tokensZAutoImageProcessorZAutoTokenizerN<image>r   c           	         s^   || _ || _|| _t|dr|jn|| _t|dd r|jn|| j| _t j	|||d d S )Nr!   image_token_id)r   )
r   r"   r    hasattrr!   getattrr$   Zconvert_tokens_to_idssuper__init__)	selfr   r   r   r    r   r!   r"   kwargs	__class__r   r   r(   M   s   

zLlavaProcessor.__init__imagestextr*   returnc                 K   sh  |du r|du rt dt||\}}| jtfd| jji|}|dur0| j|fi |d }ni }t|tr;|g}nt|t	sKt|d tsKt d|}|
ddur|d }	tt|	d \}
}|
| j || j  | j }| jdkrx|d	8 }g }|D ]}|| j| j| }|| q||d
 dd}| j|fi |d
 }| j||dgd ti |||dS )a  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
        of the above two methods for more information.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        Nz7You have to specify at least one of `images` or `text`.Ztokenizer_init_kwargsr   r   zAInvalid input text. Please provide a string, or a list of stringspixel_valuesdefault   r   return_tensorsimage)Z
modalities)dataZtensor_type)
ValueErrorr   Z_merge_kwargsr   r   Zinit_kwargsr   
isinstancestrlistgetr   r   r   r"   r    replacer!   appendpopZ_check_special_mm_tokensr   )r)   r-   r.   ZaudioZvideosr*   Zoutput_kwargsZimage_inputsZprompt_stringsr0   heightwidthZnum_image_tokenssampler3   Ztext_inputsr   r   r   __call__c   sH   '

zLlavaProcessor.__call__c                 O      | j j|i |S )z
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r   batch_decoder)   argsr*   r   r   r   rC         zLlavaProcessor.batch_decodec                 O   rB   )z
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r   decoderD   r   r   r   rG      rF   zLlavaProcessor.decodec                 C   s"   | j j}| jj}tt|| S )N)r   model_input_namesr   r9   dictfromkeys)r)   Ztokenizer_input_namesZimage_processor_input_namesr   r   r   rH      s   z LlavaProcessor.model_input_names)NNNNNr#   r   )NNNN)r   r   r   __doc__
attributesZvalid_kwargsZimage_processor_classZtokenizer_classr(   r   r   r   r   r   r   r   r   rA   rC   rG   propertyrH   __classcell__r   r   r+   r   r   (   s>    
Sr   N)rK   typingr   r   Zfeature_extraction_utilsr   Zimage_utilsr   r   r   Zprocessing_utilsr	   r
   r   r   Ztokenization_utils_baser   r   utilsr   Z
get_loggerr   loggerr   r   __all__r   r   r   r   <module>   s   
	 
&