o
    ZhV                     @   s^   d dl mZ d dlmZ eeZG dd deZG dd deZG dd deZ	g d	Z
d
S )   )PretrainedConfig)loggingc                       s   e Zd ZdZddddddddZdZdZ				
																	d'dedededededed ed!ed"ed#e	d$e	f fd%d&Z
  ZS )(Llama4VisionConfiga  
    This is the configuration class to store the configuration of a [`Llama4VisionModel`]. It is used to instantiate a
    Llama4 vision model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Llama4 109B.

    e.g. [meta-llama/Llama-4-Scout-17B-16E](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        num_hidden_layers (`int`, *optional*, defaults to 34):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input image.
        intermediate_size (`int`, *optional*, defaults to 5632):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        vision_output_dim (`int`, *optional*, defaults to 7680):
            Dimensionality of the vision model output. Includes output of transformer
            encoder with intermediate layers and global transformer encoder.
        image_size (`int`, *optional*, defaults to 448):
            The size (resolution) of each image *tile*.
        patch_size (`int`, *optional*, defaults to 14):
            The size (resolution) of each patch.
        norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        vision_feature_layer (``, *optional*, defaults to -1): TODO
        vision_feature_select_strategy (`int`, *optional*, defaults to `"default"`): TODO
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        pixel_shuffle_ratio (`int`, *optional*, defaults to 0.5): TODO
        projector_input_dim (`int`, *optional*, defaults to 4096): TODO
        projector_output_dim (`int`, *optional*, defaults to 4096): TODO
        multi_modal_projector_bias (`int`, *optional*, defaults to `False`): TODO
        projector_dropout (`int`, *optional*, defaults to 0.0): TODO
        attention_dropout (`int`, *optional*, defaults to 0.0): TODO
        rope_theta (`int`, *optional*, defaults to 10000): TODO
    colwiserowwisecolwise_rep)zmodel.layers.*.self_attn.q_projzmodel.layers.*.self_attn.k_projzmodel.layers.*.self_attn.v_projzmodel.layers.*.self_attn.o_projzvision_adapter.mlp.fc1zvision_adapter.mlp.fc2zpatch_embedding.linearZllama4_vision_modelvision_config   gelu"      r              h㈵>default{Gz?      ?   F        '  hidden_size
hidden_actnum_hidden_layersnum_attention_headsnum_channelsintermediate_sizevision_output_dim
image_size
patch_sizenorm_epsinitializer_rangec                    s   || _ || _|| _|| _|| _|| _|| _|	| _|
| _|| _	|| _
|| _|| _|| _|| _|| _|| _|| _|| _|| _t jdi | d S )N )r   r   r   r   r   r    r   r!   r"   r   r#   pixel_shuffle_ratioprojector_input_dimprojector_output_dimmulti_modal_projector_biasprojector_dropoutattention_dropoutvision_feature_layervision_feature_select_strategy
rope_thetasuper__init__)selfr   r   r   r   r   r   r   r    r!   r"   r+   r,   r#   r%   r&   r'   r(   r)   r*   r-   kwargs	__class__r$   ^/var/www/auris/lib/python3.10/site-packages/transformers/models/llama4/configuration_llama4.pyr/   T   s*   zLlama4VisionConfig.__init__)r	   r
   r   r   r   r   r   r   r   r   r   r   r   r   r   r   Fr   r   r   )__name__
__module____qualname____doc__base_model_tp_plan
model_typeZbase_config_keyintstrfloatr/   __classcell__r$   r$   r2   r4   r      sn    /		
r   c                       s   e Zd ZdZdZdgZi dddddddd	d
dddddddddddddddddddddddddZ				 	!	"	#	$	%	&	'	(	)	*	+	,	-	.	/	+	0	*	+	)	-	1	/	*	*	2		)		3	4d7 fd5d6	Z  ZS )8Llama4TextConfiga  
    This is the configuration class to store the configuration of a [`Llama4TextModel`]. It is used to instantiate a
    Llama4 text model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Llama4 109B.

    e.g. [meta-llama/Llama-4-Scout-17B-16E](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 202048):
            Vocabulary size of the Llama4 text model. Defines the maximum number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`Llama4TextModel`].
        hidden_size (`int`, *optional*, defaults to 5120):
            Dimensionality of the embeddings and hidden states.
        intermediate_size (`int`, *optional*, defaults to 8192):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        intermediate_size_mlp (`int`, *optional*, defaults to 16384): TODO
        num_hidden_layers (`int`, *optional*, defaults to 48):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 40):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If not
            specified, will default to `num_attention_heads`.
        head_dim (`int`, *optional*, defaults to 128): TODO
        hidden_act (`str` or `Callable`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the encoder and pooler.
        max_position_embeddings (`int`, *optional*, defaults to 131072):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions.
        pad_token_id (`int`, *optional*, defaults to 128004):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the beginning of sentence token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the end of sentence token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to `500000.0`):
            The base period of the RoPE embeddings.
        attention_dropout (`int`, *optional*, defaults to 0.0): TODO
        num_experts_per_tok (`int`, *optional*, defaults to 1): TODO
        num_local_experts (`int`, *optional*, defaults to 16): TODO
        moe_layers (`int`, *optional*): TODO
        interleave_moe_layer_step (`int`, *optional*, defaults to 1): TODO
        use_qk_norm (`int`, *optional*, defaults to `True`): TODO
        output_router_logits (`int`, *optional*, defaults to `False`): TODO
        router_aux_loss_coef (`int`, *optional*, defaults to 0.001): TODO
        router_jitter_noise (`int`, *optional*, defaults to 0.0): TODO
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
            <TODO>
            <TODO>
        no_rope_layers (`List[int]`, *optional*):
            List with at least the same length as the number of layers in the model.
            A `1` at an index position indicates that the corresponding layer will use RoPE,
            while a `0` indicates that it's a NoPE layer.
        no_rope_layer_interval (`int`, *optional*, defaults to 4):
            If `no_rope_layers` is `None`, it will be created using a NoPE layer every
            `no_rope_layer_interval` layers.
        attention_chunk_size (`int`, *optional*, defaults to 8192):
            <TODO>
        attn_temperature_tuning (`bool`, *optional*, defaults to `True`):
            Whether to dynamically scale the attention temperature for each query token based on sequence length.
            Recommended for long sequences (e.g., >32k tokens) to maintain stable output results.
        floor_scale (`int`, *optional*, defaults to 8192): TODO
        attn_scale (`int`, *optional*, defaults to 0.1): TODO
        cache_implementation (`<fill_type>`, *optional*, defaults to `"hybrid"`): <fill_docstring>

    Example:
    Zllama4_textZpast_key_valueszlayers.*.self_attn.q_projr   zlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projr   zlayers.*.input_layernorm.weightZsequence_parallelz(layers.*.post_attention_layernorm.weightznorm.weightz-layers.*.feed_forward.shared_expert.gate_projZlocal_colwisez+layers.*.feed_forward.shared_expert.up_projz-layers.*.feed_forward.shared_expert.down_projZlocal_rowwisez*layers.*.feed_forward.experts.gate_up_projZlocal_packed_rowwisez'layers.*.feed_forward.experts.down_projzlayers.*.feed_forward.expertslocalzlayers.*.feed_forward.gate_projzlayers.*.feed_forward.up_projzlayers.*.feed_forward.down_projzlayers.*.feed_forwardgather@         @  0   (         silu   r   r   TN      F  r   r   MbP?   皙?hybridc$           &         sB  t  jd||||d|$ | | _|"| _|!| _|| _|
| _|| _|| _|| _	|| _
|| _|| _d| _|#| _|d u r;|}|| _|	| _|| _|| _|| _|| _|| _|d urV|n| j| j | _|| _|| _|| _|| _|| _|| _|g krud } fddt| j
D }%|r|n|%| _|| _|d ur|n	t t|d ||| _!|| _"d S )N)pad_token_idbos_token_ideos_token_idtie_word_embeddingsFc                    s    g | ]}t |d    dkqS )rL       )r;   ).0Z	layer_idxno_rope_layer_intervalr$   r4   
<listcomp>`  s    z-Llama4TextConfig.__init__.<locals>.<listcomp>rL   r$   )#r.   r/   attn_temperature_tuning
attn_scalefloor_scale
vocab_sizemax_position_embeddingsr   r   intermediate_size_mlpr   r   rope_scalingZattention_biascache_implementationnum_key_value_headsr   r#   rms_norm_eps	use_cacher-   r*   head_dimuse_qk_normnum_experts_per_toknum_local_expertsoutput_router_logitsrouter_aux_loss_coefrouter_jitter_noiserangeno_rope_layersinterleave_moe_layer_steplist
moe_layersattention_chunk_size)&r0   r_   r   r   ra   r   r   rd   rg   r   r`   r#   re   rf   rS   rT   rU   rV   r-   r*   ri   rj   rr   rp   rh   rk   rl   rm   rb   ro   rZ   rs   r\   r^   r]   rc   r1   Zdefault_no_rope_layersr2   rY   r4   r/     sb   '

zLlama4TextConfig.__init__)#rB   rC   rD   rE   rF   rG   rH   rI   rJ   rK   r   r   TNrL   rM   FrN   r   rL   r   NrL   TFrO   r   NNrP   rD   TrD   rQ   rR   )	r5   r6   r7   r8   r:   Zkeys_to_ignore_at_inferencer9   r/   r>   r$   r$   r2   r4   r?      s    r	
r?   c                       sP   e Zd ZdZdZddddZeedZdd	iZ		
	
				d fdd	Z
  ZS )Llama4Configa  
    This is the configuration class to store the configuration of a [`Llama4Model`]. It is used to instantiate an
    Llama4 model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Llama4 109B.

    e.g. [meta-llama/Llama-4-Scout-17B-16E](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vision_config (`Llama4VisionConfig`, *optional*):
            The Llama4 Vision config.
        text_config (`Llama4TextConfig`, *optional*):
            The Llama4 Text config.
        boi_token_index (`int`, *optional*, defaults to 200080):
            The begin-of-image token index to wrap the image prompt.
        eoi_token_index (`int`, *optional*, defaults to 200081):
            The end-of-image token index to wrap the image prompt.
        image_token_index (`int`, *optional*, defaults to 200092):
            The image token index to encode the image prompt.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.

    ```python
    >>> from transformers import Llama4Model, Llama4Config

    >>> # Initializing a Llama4 7B style configuration
    >>> configuration = Llama4Config()

    >>> # Initializing a model from the Llama4 7B style configuration
    >>> model = Llama4Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zllama4image_token_indexboi_token_indexeoi_token_index)Zimage_token_idZboi_token_idZeoi_token_id)text_configr   zmulti_modal_projector.linear_1r   N   Fc                    s   |d u rt  | _td nt|trt di || _nt|t r$|| _|| _|| _|| _|d u r;t	 | _
td nt|trIt	di || _
nt|t	rQ|| _
t jdd|i| d S )Nz9vision_config is None, using default llama4 vision configz5text_config is None, using default llama4 text configrV   r$   )r   r   loggerinfo
isinstancedictrv   rw   ru   r?   rx   r.   r/   )r0   r   rx   rv   rw   ru   rV   r1   r2   r$   r4   r/     s$   




zLlama4Config.__init__)NNry   rz   r{   F)r5   r6   r7   r8   r:   Zattribute_mapr?   r   Zsub_configsr9   r/   r>   r$   r$   r2   r4   rt   o  s"    &
rt   )rt   r?   r   N)Zconfiguration_utilsr   utilsr   Z
get_loggerr5   r|   r   r?   rt   __all__r$   r$   r$   r4   <module>   s   
j mR