o
    Zh#                     @   s   d Z ddlmZ ddlmZmZmZmZ ddlm	Z	m
Z
 ddlmZmZ ddlmZmZmZ eeZG dd	 d	e	ZG d
d deZd	dgZdS )zLayoutLM model configuration    OrderedDict)AnyListMappingOptional   )PretrainedConfigPreTrainedTokenizer)
OnnxConfigPatchingSpec)
TensorTypeis_torch_availableloggingc                       sF   e Zd ZdZdZ											
						d fdd	Z  ZS )LayoutLMConfiga  
    This is the configuration class to store the configuration of a [`LayoutLMModel`]. It is used to instantiate a
    LayoutLM model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the LayoutLM
    [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) architecture.

    Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the
    documentation from [`BertConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the LayoutLM model. Defines the different tokens that can be represented by the
            *inputs_ids* passed to the forward method of [`LayoutLMModel`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed into [`LayoutLMModel`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 0):
            The value used to pad input_ids.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
            The maximum value that the 2D position embedding might ever used. Typically set this to something large
            just in case (e.g., 1024).

    Examples:

    ```python
    >>> from transformers import LayoutLMConfig, LayoutLMModel

    >>> # Initializing a LayoutLM configuration
    >>> configuration = LayoutLMConfig()

    >>> # Initializing a model (with random weights) from the configuration
    >>> model = LayoutLMModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zlayoutlm:w           gelu皙?      {Gz?-q=r   absoluteT   c                    st   t  jdd|i| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _d S )Npad_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangelayer_norm_epsposition_embedding_type	use_cachemax_2d_position_embeddings)selfr!   r"   r#   r$   r&   r%   r'   r(   r)   r*   r+   r,   r   r-   r.   r/   kwargs	__class__r   b/var/www/auris/lib/python3.10/site-packages/transformers/models/layoutlm/configuration_layoutlm.pyr    c   s    
zLayoutLMConfig.__init__)r   r   r   r   r   r   r   r   r   r   r   r   r   r   Tr   )__name__
__module____qualname____doc__Z
model_typer    __classcell__r   r   r2   r4   r      s(    Dr   c                       s   e Zd Z		ddededeee  f fddZe	de
ee
eef f fd	d
Z				ddededededee de
eef f fddZ  ZS )LayoutLMOnnxConfigdefaultNconfigtaskpatching_specsc                    s"   t  j|||d |jd | _d S )N)r=   r>      )r   r    r/   Zmax_2d_positions)r0   r<   r=   r>   r2   r   r4   r       s   zLayoutLMOnnxConfig.__init__returnc                 C   s8   t ddddfddddfddddfddddfgS )N	input_idsbatchsequence)r   r?   bboxZattention_maskZtoken_type_idsr   )r0   r   r   r4   inputs   s   zLayoutLMOnnxConfig.inputsF	tokenizer
batch_size
seq_lengthis_pair	frameworkc           	         sz   t  j|||||d}g d}|tjkstdt stdddl}|d j\}}|	g |g| 
|dd|d	< |S )
a  
        Generate inputs to provide to the ONNX exporter for the specific framework

        Args:
            tokenizer: The tokenizer associated with this model configuration
            batch_size: The batch size (int) to export the model for (-1 means dynamic axis)
            seq_length: The sequence length (int) to export the model for (-1 means dynamic axis)
            is_pair: Indicate if the input is a pair (sentence 1, sentence 2)
            framework: The framework (optional) the tokenizer will generate tensor for

        Returns:
            Mapping[str, Tensor] holding the kwargs to provide to the model's forward function
        )rH   rI   rJ   rK   )0   T   I      zCExporting LayoutLM to ONNX is currently only supported for PyTorch.z7Cannot generate dummy inputs without PyTorch installed.r   NrA   r?   rD   )r   generate_dummy_inputsr   ZPYTORCHNotImplementedErrorr   
ValueErrortorchshapeZtensorZtile)	r0   rG   rH   rI   rJ   rK   Z
input_dictboxrS   r2   r   r4   rP      s   

"z(LayoutLMOnnxConfig.generate_dummy_inputs)r;   N)rF   rF   FN)r5   r6   r7   r	   strr   r   r   r    propertyr   intrE   r
   boolr   r   rP   r9   r   r   r2   r4   r:      s:    
	 
r:   N)r8   collectionsr   typingr   r   r   r    r	   r
   Zonnxr   r   utilsr   r   r   Z
get_loggerr5   loggerr   r:   __all__r   r   r   r4   <module>   s   
m>