o
    Zh                     @   s@   d Z ddlmZ ddlmZ eeZG dd deZdgZ	dS )zJetMoe model configuration   )PretrainedConfig)loggingc                       sT   e Zd ZdZdZdgZ								
													d fdd	Z  ZS )JetMoeConfigaJ  
    This is the configuration class to store the configuration of a [`JetMoeModel`]. It is used to instantiate a
    JetMoe model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a configuration of the JetMoe-4B.

    [jetmoe/jetmoe-8b](https://huggingface.co/jetmoe/jetmoe-8b)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the JetMoe model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`JetMoeModel`]
        hidden_size (`int`, *optional*, defaults to 2048):
            Dimension of the hidden representations.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each key and value in the Transformer encoder.
        kv_channels (`int`, *optional*, defaults to 128):
            Defines the number of channels for the key and value tensors.
        intermediate_size (`int`, *optional*, defaults to 5632):
            Dimension of the MLP representations.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with. JetMoe's attention allows sequence of
            up to 4096 tokens.
        activation_function (`string`, *optional*, defaults to `"silu"`):
            Defines the activation function for MLP experts.
        num_local_experts (`int`, *optional*, defaults to 8):
            Defines the number of experts in the MoE and MoA.
        num_experts_per_tok (`int, *optional*, defaults to 2):
            The number of experts to route per-token and for MoE and MoA.
        output_router_logits (`bool`, *optional*, defaults to `False`):
            Whether or not the router logits should be returned by the model. Enabling this will also
            allow the model to output the auxiliary loss.
        aux_loss_coef (`float`, *optional*, defaults to 0.01):
            The coefficient for the auxiliary loss.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `True`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.01):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import JetMoeModel, JetMoeConfig

    >>> # Initializing a JetMoe 4B style configuration
    >>> configuration = JetMoeConfig()

    >>> # Initializing a model from the JetMoe 4B style configuration
    >>> model = JetMoeModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZjetmoeZpast_key_values }                    silu      F{Gz?T        @ư>        c                    s   |
|	krt d|| _|| _|| _||
 | _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _|| _|| _t jd|||d| d S )NzG`num_experts_per_tok` must be less than or equal to `num_local_experts`)bos_token_ideos_token_idtie_word_embeddings )
ValueError
vocab_sizehidden_sizenum_hidden_layersZnum_attention_headsnum_key_value_headskv_channelsintermediate_sizemax_position_embeddingsactivation_functionnum_local_expertsnum_experts_per_tokoutput_router_logitsaux_loss_coef	use_cacheinitializer_rangeattention_dropoutr   r   
rope_thetarms_norm_epssuper__init__)selfr   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r   r   r   r(   r)   r&   r'   kwargs	__class__r   ^/var/www/auris/lib/python3.10/site-packages/transformers/models/jetmoe/configuration_jetmoe.pyr+   b   s6   

zJetMoeConfig.__init__)r   r   r   r   r	   r
   r   r   r   r   Fr   Tr   r   Tr   r   r   r   )__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferencer+   __classcell__r   r   r.   r0   r      s2    Fr   N)
r4   Zconfiguration_utilsr   utilsr   Z
get_loggerr1   loggerr   __all__r   r   r   r0   <module>   s   
 
