o
    Zh=                     @   s~   d Z ddlmZ ddlmZ ddlmZ ddlmZm	Z	 e
eZG dd deZG d	d
 d
eZG dd deZg dZdS )z InstructBLIP model configuration   )PretrainedConfig)!MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)logging   )CONFIG_MAPPING
AutoConfigc                       s@   e Zd ZdZdZdZ								
				d fdd	Z  ZS )InstructBlipVisionConfigaW  
    This is the configuration class to store the configuration of a [`InstructBlipVisionModel`]. It is used to
    instantiate a InstructBLIP vision encoder according to the specified arguments, defining the model architecture.
    Instantiating a configuration defaults will yield a similar configuration to that of the InstructBLIP
    [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 1408):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 6144):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 39):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 14):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported. to 1e-5): The epsilon used by the layer
            normalization layers.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 1e-10):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries and values in the self-attention layers.

    Example:

    ```python
    >>> from transformers import InstructBlipVisionConfig, InstructBlipVisionModel

    >>> # Initializing a InstructBlipVisionConfig with Salesforce/instruct-blip-flan-t5 style configuration
    >>> configuration = InstructBlipVisionConfig()

    >>> # Initializing a InstructBlipVisionModel (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
    >>> model = InstructBlipVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zinstructblip_vision_modelvision_config     '            geluư>        绽|=Tc                    sX   t  jdi | || _|| _|| _|| _|| _|| _|
| _|	| _	|| _
|| _|| _d S )N )super__init__hidden_sizeintermediate_sizenum_hidden_layersnum_attention_heads
patch_size
image_sizeinitializer_rangeattention_dropoutlayer_norm_eps
hidden_actqkv_bias)selfr   r   r   r   r   r   r    r   r   r   r!   kwargs	__class__r   j/var/www/auris/lib/python3.10/site-packages/transformers/models/instructblip/configuration_instructblip.pyr   P   s   
z!InstructBlipVisionConfig.__init__)r
   r   r   r   r   r   r   r   r   r   T__name__
__module____qualname____doc__
model_typeZbase_config_keyr   __classcell__r   r   r$   r&   r      s     2r   c                       sH   e Zd ZdZdZdZ											
						d fdd	Z  ZS )InstructBlipQFormerConfiga  
    This is the configuration class to store the configuration of a [`InstructBlipQFormerModel`]. It is used to
    instantiate a InstructBLIP Querying Transformer (Q-Former) model according to the specified arguments, defining the
    model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
    the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5)
    architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs.
    Read the documentation from [`PretrainedConfig`] for more information.

    Note that [`InstructBlipQFormerModel`] is very similar to [`BertLMHeadModel`] with interleaved cross-attention.

    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the Q-Former model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling the model.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 0):
            Token id used for padding sequences.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        cross_attention_frequency (`int`, *optional*, defaults to 2):
            The frequency of adding cross-attention to the Transformer layers.
        encoder_hidden_size (`int`, *optional*, defaults to 1408):
            The hidden size of the hidden states for cross-attention.

    Examples:

    ```python
    >>> from transformers import InstructBlipQFormerConfig, InstructBlipQFormerModel

    >>> # Initializing a InstructBLIP Salesforce/instruct-blip-flan-t5 style configuration
    >>> configuration = InstructBlipQFormerConfig()

    >>> # Initializing a model (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
    >>> model = InstructBlipQFormerModel(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zinstructblip_qformerqformer_config:w           r   皙?   {Gz?-q=    absoluter   r
   c                    sn   t  jdd|i| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _d S )Npad_token_idr   )r   r   
vocab_sizer   r   r   r    r   hidden_dropout_probattention_probs_dropout_probmax_position_embeddingsr   r   position_embedding_typecross_attention_frequencyencoder_hidden_size)r"   r;   r   r   r   r   r    r<   r=   r>   r   r   r:   r?   r@   rA   r#   r$   r   r&   r      s   
z"InstructBlipQFormerConfig.__init__)r0   r1   r2   r2   r3   r   r4   r4   r5   r6   r7   r8   r9   r   r
   r'   r   r   r$   r&   r.   n   s(    ?r.   c                       s^   e Zd ZdZdZddiZeeedZ						d fdd		Z
ed
ededefddZ  ZS )InstructBlipConfiga@
  
    [`InstructBlipConfig`] is the configuration class to store the configuration of a
    [`InstructBlipForConditionalGeneration`]. It is used to instantiate a InstructBLIP model according to the specified
    arguments, defining the vision model, Q-Former model and language model configs. Instantiating a configuration with
    the defaults will yield a similar configuration to that of the InstructBLIP
    [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`InstructBlipVisionConfig`].
        qformer_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`InstructBlipQFormerConfig`].
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize any [`PretrainedConfig`].
        num_query_tokens (`int`, *optional*, defaults to 32):
            The number of query tokens passed through the Transformer.

        image_token_index (`int`, *optional*):
            Token index of special image token.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import (
    ...     InstructBlipVisionConfig,
    ...     InstructBlipQFormerConfig,
    ...     OPTConfig,
    ...     InstructBlipConfig,
    ...     InstructBlipForConditionalGeneration,
    ... )

    >>> # Initializing a InstructBlipConfig with Salesforce/instruct-blip-flan-t5 style configuration
    >>> configuration = InstructBlipConfig()

    >>> # Initializing a InstructBlipForConditionalGeneration (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
    >>> model = InstructBlipForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a InstructBlipConfig from a InstructBlipVisionConfig, InstructBlipQFormerConfig and any PretrainedConfig

    >>> # Initializing InstructBLIP vision, InstructBLIP Q-Former and language model configurations
    >>> vision_config = InstructBlipVisionConfig()
    >>> qformer_config = InstructBlipQFormerConfig()
    >>> text_config = OPTConfig()

    >>> config = InstructBlipConfig.from_text_vision_configs(vision_config, qformer_config, text_config)
    ```ZinstructblipZimage_token_idimage_token_index)text_configr/   r	   N    c                    s   t  jdi | |d u ri }td |d u ri }td |d u r*i }td tdi || _tdi || _d|v rB|d nd}t| di || _	|| _
|| _| jj| j_| j	jtv | _d| _d| _d S )	NzUvision_config is None. initializing the InstructBlipVisionConfig with default values.zWqformer_config is None. Initializing the InstructBlipQFormerConfig with default values.zTtext_config is None. Initializing the text config with default values (`OPTConfig`).r,   optg      ?r6   r   )r   r   loggerinfor   r	   r.   r/   r   rD   num_query_tokensrC   r   rA   r,   r   Zuse_decoder_only_language_modelZinitializer_factorr   )r"   r	   r/   rD   rI   rC   r#   Ztext_model_typer$   r   r&   r     s(   	



zInstructBlipConfig.__init__r	   r/   rD   c                 K   s"   | d|  |  |  d|S )z
        Instantiate a [`InstructBlipConfig`] (or a derived class) from a InstructBLIP vision model, Q-Former and
        language model configurations.

        Returns:
            [`InstructBlipConfig`]: An instance of a configuration object
        )r	   r/   rD   Nr   )to_dict)clsr	   r/   rD   r#   r   r   r&    from_vision_qformer_text_configs;  s   z3InstructBlipConfig.from_vision_qformer_text_configs)NNNrE   N)r(   r)   r*   r+   r,   Zattribute_mapr   r.   r   Zsub_configsr   classmethodr   rL   r-   r   r   r$   r&   rB      s.    7#rB   )rB   r.   r   N)r+   Zconfiguration_utilsr   Zmodels.auto.modeling_autor   utilsr   autor   r   Z
get_loggerr(   rG   r   r.   rB   __all__r   r   r   r&   <module>   s   
Th}