o
    Zh/                     @   sp   d Z ddlmZ ddlmZ ddlmZmZ ee	Z
G dd deZG dd	 d	eZG d
d deZdgZdS )zIdefics2 model configuration   )PretrainedConfig)logging   )CONFIG_MAPPING
AutoConfigc                       s@   e Zd ZdZdZdZ									
			d fdd	Z  ZS )Idefics2VisionConfiga  
    This is the configuration class to store the configuration of a [`Idefics2VisionModel`]. It is used to instantiate a
    Idefics2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint
    [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) used in the Idefics2 model
    [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation for initializing all weight matrices in the model.

    Example:

    ```python
    >>> from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
    >>> from transformers.models.idefics2.configuration_idefics2 import Idefics2VisionConfig

    >>> # Initializing a Idefics2VisionConfig with google/siglip-base-patch16-224 style configuration
    >>> configuration = Idefics2VisionConfig()

    >>> # Initializing a Idefics2VisionTransformer (with random weights) from the google/siglip-base-patch16-224 style configuration
    >>> model = Idefics2VisionTransformer(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zidefics2_visionvision_config         r          gelu_pytorch_tanhư>        {Gz?c                    sX   t  jdi | || _|| _|| _|| _|| _|| _|| _|
| _	|	| _
|| _|| _d S )N )super__init__hidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_channels
patch_size
image_sizeattention_dropoutlayer_norm_eps
hidden_actinitializer_range)selfr   r   r   r   r   r   r   r   r   r   r   kwargs	__class__r   b/var/www/auris/lib/python3.10/site-packages/transformers/models/idefics2/configuration_idefics2.pyr   O   s   
zIdefics2VisionConfig.__init__)r	   r
   r   r   r   r   r   r   r   r   r   )__name__
__module____qualname____doc__
model_typeZbase_config_keyr   __classcell__r   r   r"   r$   r      s     3r   c                       s:   e Zd ZdZdZ									
		d fdd	Z  ZS )Idefics2PerceiverConfigao  
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the perceiver block.
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        resampler_n_latents (`int`, *optional*, defaults to 64):
            Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
        resampler_depth (`int`, *optional*, defaults to 3):
            Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (<= 3).
        resampler_n_heads (`int`, *optional*, defaults to 16):
            Number of heads in each Transformer block (for multi-headed self-attention).
        resampler_head_dim (`int`, *optional*, defaults to 96):
            Dimensionality of each head projection in the Transformer block.
        num_key_value_heads (`int`, *optional*, defaults to 4):
            Number of key-value heads in the perceiver attention block.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation for initializing all weight matrices in the model.
    Zidefics2_perceiversilu   r   @   r      `      r   r   c                    sv   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	| j| jkr0t
d| j d| j t jdi | d S )Nznum_key_value_heads=z1 must be less than or equal to resampler_n_heads=r   )r   r   rms_norm_epsresampler_n_latentsresampler_depthresampler_n_headsnum_key_value_headsresampler_head_dimr   r   
ValueErrorr   r   )r    r   r   r2   r3   r4   r5   r7   r6   r   r   r!   r"   r   r$   r      s"   
z Idefics2PerceiverConfig.__init__)
r,   r-   r   r.   r   r/   r0   r1   r   r   )r%   r&   r'   r(   r)   r   r*   r   r   r"   r$   r+   m   s    r+   c                       s>   e Zd ZdZdZeeedZ						d
 fdd		Z	  Z
S )Idefics2Configa  
    This is the configuration class to store the configuration of a [`Idefics2Model`]. It is used to instantiate a
    Idefics2 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the model of the Idefics2
    [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should cache the key/value pairs of the attention mechanism.
        image_token_id (`int`, *optional*, defaults to 32001):
            The id of the "image" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to tie the word embeddings with the token embeddings.
        vision_config (`IdeficsVisionConfig` or `dict`, *optional*):
            Custom vision config or dict
        perceiver_config (`IdeficsPerceiverConfig` or `dict`, *optional*):
            Custom perceiver config or dict
        text_config (`MistralConfig` or `dict`, *optional*):
            Custom text config or dict for the text model

    Example:
    ```python
    >>> from transformers import Idefics2Model, Idefics2Config
    >>> # Initializing configuration
    >>> configuration = Idefics2Config()
    >>> # Initializing a model from the configuration
    >>> model = Idefics2Model(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zidefics2)text_configperceiver_configr   T}  FNc                    sX  || _ || _|| _|d u rt | _td nt|tr%tdi || _nt|tr-|| _|d u r;t	 | _
td nt|trIt	di || _
nt|t	rQ|| _
t|trnd|v r^|d nd|d< t|d  di |}n|d u rtd td dddd	d
}|| _| jj| jjkr| jj| j_| jj| j_td t jdi |d|i d S )Nz7perciver_config is None, using default perceiver configz2vision_config is None, using default vision configr)   Zmistralz.text_config is None, using default text configi   gh㈵>    F)Zmax_position_embeddingsr2   Zpad_token_idtie_word_embeddingszPerceiver config has a different `hidden_size` than text config, which means default values were used. In your model's config on the hub, add `hidden_size` and `rms_norm_eps` keys under the `perceiver_config` dict. r>   r   )image_token_id	use_cacher>   r+   r;   loggerinfo
isinstancedictr   r   r   r:   r   r2   Zwarning_oncer   r   )r    r@   r?   r>   r   r;   r:   r!   r"   r   r$   r      sH   






zIdefics2Config.__init__)Tr<   FNNN)r%   r&   r'   r(   r)   r   r+   r   Zsub_configsr   r*   r   r   r"   r$   r9      s    "r9   N)r(   Zconfiguration_utilsr   utilsr   autor   r   Z
get_loggerr%   rA   r   r+   r9   __all__r   r   r   r$   <module>   s   
U>
a