o
    ZhK                     @   s   d Z ddlmZmZmZ ddlmZ ddlmZ ddl	m
Z
mZmZmZ ddlmZmZ ddlmZ G d	d
 d
e
ddZeeZG dd deZdgZdS )z$
Image/Text processor class for GIT
    )ListOptionalUnion   )BatchFeature)
ImageInput)ProcessingKwargsProcessorMixinUnpack!_validate_images_text_input_order)PreTokenizedInput	TextInput)loggingc                   @   s   e Zd Zi ZdS )GitProcessorKwargsN)__name__
__module____qualname__	_defaults r   r   U/var/www/auris/lib/python3.10/site-packages/transformers/models/git/processing_git.pyr      s    r   F)totalc                       s   e Zd ZdZddgZdZdZ fddZ				dd	ee	 d
ee
eeee ee f  dee defddZdd Zdd Zedd Z  ZS )GitProcessora  
    Constructs a GIT processor which wraps a CLIP image processor and a BERT tokenizer into a single processor.

    [`GitProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BertTokenizerFast`]. See the
    [`~GitProcessor.__call__`] and [`~GitProcessor.decode`] for more information.

    Args:
        image_processor ([`AutoImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`AutoTokenizer`]):
            The tokenizer is a required input.
    image_processor	tokenizerZAutoImageProcessorZAutoTokenizerc                    s   t  || | j| _d S )N)super__init__r   Zcurrent_processor)selfr   r   	__class__r   r   r   5   s   zGitProcessor.__init__Nimagestextkwargsreturnc           
      K   s   |du r|du rt dt||\}}| jtfd| jji|}i }|dur6| j|fi |d }|| |durJ| j|fi |d }	||	 t||d 	ddS )	a	  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring
        of the above two methods for more information.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`, *optional*):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).

            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        Nz?You have to specify either text or images. Both cannot be none.Ztokenizer_init_kwargsZtext_kwargsZimages_kwargsZcommon_kwargsZreturn_tensors)dataZtensor_type)

ValueErrorr   Z_merge_kwargsr   r   Zinit_kwargsupdater   r   get)
r   r   r    ZaudioZvideosr!   Zoutput_kwargsr#   Ztext_featuresZimage_featuresr   r   r   __call__9   s$   )

zGitProcessor.__call__c                 O      | j j|i |S )z
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r   batch_decoder   argsr!   r   r   r   r)   x      zGitProcessor.batch_decodec                 O   r(   )z
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r   decoder*   r   r   r   r-      r,   zGitProcessor.decodec                 C   s   g dS )N)Z	input_idsZattention_maskZpixel_valuesr   )r   r   r   r   model_input_names   s   zGitProcessor.model_input_names)NNNN)r   r   r   __doc__
attributesZimage_processor_classZtokenizer_classr   r   r   r   r   r   r   r
   r   r   r'   r)   r-   propertyr.   __classcell__r   r   r   r   r   #   s.    
?r   N)r/   typingr   r   r   Zfeature_extraction_utilsr   Zimage_utilsr   Zprocessing_utilsr   r	   r
   r   Ztokenization_utils_baser   r   utilsr   r   Z
get_loggerr   loggerr   __all__r   r   r   r   <module>   s   

h