o
    ZhC                     @   s   d Z ddlmZmZmZ ddlmZ ddlmZ e	e
ZG dd deZG dd	 d	eZG d
d deZG dd deZG dd deZg dZdS )zFLAVA model configurations    )AnyDictOptional   )PretrainedConfig)loggingc                       s   e Zd ZdZdZdZ										
						d!dededededededededededededededef fdd Z	  Z
S )"FlavaImageConfiga  
    This is the configuration class to store the configuration of a [`FlavaImageModel`]. It is used to instantiate an
    FLAVA model according to the specified arguments, defining the model architecture.

    Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
    [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        mask_token (`bool`, *optional*, defaults to `True`):
            Whether to use a mask token or not. Used in MIM (Masked Image Modeling) loss for FLAVA.
        vocab_size (`int`, *optional*, defaults to 8192):
            Vocabulary size of the [`FlavaImageCodebook`] used in conjunction with [`FlavaImageModel`] for MIM (Masked
            Image Modeling) loss for FLAVA.

    Example:

    ```python
    >>> from transformers import FlavaImageConfig, FlavaImageModel

    >>> # Initializing a FlavaImageModel with  style configuration
    >>> configuration = FlavaImageConfig()

    >>> # Initializing a FlavaImageModel model (with random weights) from the style configuration
    >>> model = FlavaImageModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zflava_image_modelimage_config         gelu        {Gz?-q=      r   T    hidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_eps
image_size
patch_sizenum_channelsqkv_bias
mask_token
vocab_sizec                    sp   t  jdi | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _d S N )super__init__r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   )selfr   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   kwargs	__class__r$   \/var/www/auris/lib/python3.10/site-packages/transformers/models/flava/configuration_flava.pyr&   Z       
zFlavaImageConfig.__init__)r
   r   r   r   r   r   r   r   r   r   r   r   TTr   __name__
__module____qualname____doc__
model_typebase_config_keyintfloatboolr&   __classcell__r$   r$   r)   r+   r      sd    <	
r   c                       s   e Zd ZdZdZdZ										
							d"dedededededededededededededede	f fd d!Z
  ZS )#FlavaTextConfigaC  
    This is the configuration class to store the configuration of a [`FlavaTextModel`]. It is used to instantiate an
    FLAVA model according to the specified arguments, defining the model architecture.

    Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
    [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`FlavaTextModel`].
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`FlavaTextModel`]. Note that even though
            text encoder allows `token_type_ids`'s value as 2, for text-only pretraining and fine-tuning, only 1 is
            used similar to RoBERTa.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048). For VL, max_length passed to model is 77.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.

    Example:

    ```python
    >>> from transformers import FlavaTextConfig, FlavaTextModel

    >>> # Initializing a FlavaTextModel with  style configuration
    >>> configuration = FlavaTextConfig()

    >>> # Initializing a FlavaTextModel model (with random weights) from the style configuration
    >>> model = FlavaTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zflava_text_modeltext_config:w        absoluter
   r   r   r   r   r   r   r   Tr"   type_vocab_sizemax_position_embeddingsposition_embedding_typer   r   r   r   r   r   r   r   r   pad_token_idr    c                    sp   t  jdi | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _d S r#   )r%   r&   r"   r>   r?   r@   r   r   r   r   r   r   r   r   r   r    rA   )r'   r"   r>   r?   r@   r   r   r   r   r   r   r   r   r   rA   r    r(   r)   r$   r+   r&      r,   zFlavaTextConfig.__init__)r:   r;   r<   r=   r
   r   r   r   r   r   r   r   r   r   T)r.   r/   r0   r1   r2   r3   r4   strr5   r6   r&   r7   r$   r$   r)   r+   r8      sd    G	
r8   c                       sn   e Zd ZdZdZdZ										
			ddededededededededededef fddZ	  Z
S )FlavaMultimodalConfiga  
    This is the configuration class to store the configuration of a [`FlavaMultimodalModel`]. It is used to instantiate
    an FLAVA model according to the specified arguments, defining the model architecture.

    Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA
    [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 6):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        use_cls_token (`bool`, *optional*, defaults to `True`):
            Whether to use an extra CLS token for multimodal settings. Usually needed by the FLAVA model.


    Example:

    ```python
    >>> from transformers import FlavaMultimodalConfig, FlavaMultimodalModel

    >>> # Initializing a FlavaMultimodalModel with  style configuration
    >>> configuration = FlavaMultimodalConfig()

    >>> # Initializing a FlavaMultimodalModel model (with random weights) from the style configuration
    >>> model = FlavaMultimodalModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zflava_multimodal_modelmultimodal_configr
      r   r   r   r   r   r   Tr   r   r   r   r   r   r   r   r   r    use_cls_tokenc                    sX   t  jdi | || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _d S r#   )r%   r&   r   r   r   r   r   r   r   r   r   r    rF   )r'   r   r   r   r   r   r   r   r   r   r    rF   r(   r)   r$   r+   r&   )  s   
zFlavaMultimodalConfig.__init__)r
   rE   r   r   r   r   r   r   r   TTr-   r$   r$   r)   r+   rC      sL    4	
rC   c                       sT   e Zd ZdZdZ	 								dd
ededededededef fddZ  ZS )FlavaImageCodebookConfigZflava_image_codebookimage_codebook_config   r   r;      r   Tr   
num_groupsinput_channelsnum_blocks_per_groupr   r"   freezer   c           	         s@   t  jdi | || _|| _|| _|| _|| _|| _|| _d S r#   )	r%   r&   rK   rL   rM   r   r"   rN   r   )	r'   rK   rL   rM   r   r"   rN   r   r(   r)   r$   r+   r&   v  s   
z!FlavaImageCodebookConfig.__init__)rI   r   r;   rJ   r   Tr   )	r.   r/   r0   r2   r3   r4   r5   r&   r7   r$   r$   r)   r+   rG   G  s4    -rG   c                )       s   e Zd ZdZdZeeeedZ													
									d$de
eeef  de
eeef  de
eeef  de
eeef  dedededededededededededededededef( fd d!Zededededefd"d#Z  ZS )%FlavaConfiga  
    [`FlavaConfig`] is the configuration class to store the configuration of a [`FlavaModel`]. It is used to
    instantiate FLAVA model according to the specified arguments, defining the text model, image model, image codebook
    and multimodal model configs. Instantiating a configuration with the defaults will yield a similar configuration to
    that of the FLAVA [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`FlavaTextConfig`].
        image_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`FlavaImageConfig`].
        multimodal_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`FlavaMultimodalConfig`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and image projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter. Default is used as per the original FLAVA/CLIP
            implementation.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        ce_ignore_index (`int`, *optional*, defaults to -100):
            Cross entropy index to ignore.
        mim_weight (`float`, *optional*, defaults to 1.0):
            Weight to be assigned to MIM (Masked Image Modeling) unimodal loss
        mlm_weight (`float`, *optional*, defaults to 1.0):
            Weight to be assigned to MLM (Masked Language Modeling) unimodal loss
        global_contrastive_weight (`float`, *optional*, defaults to 1.0):
            Weight to be assigned to global contrastive cross-alignment loss.
        itm_weight (`float`, *optional*, defaults to 1.0):
            Weight to be assigned to image-text matching multimodal loss.
        mmm_image_weight (`float`, *optional*, defaults to 1.0):
            Weight to be assigned to MMM loss's image part.
        mmm_text_weight (`float`, *optional*, defaults to 1.0):
            Weight to be assigned to MMM loss's text part.
        global_backprop_contrastive (`bool`, *optional*, defaults to `True`):
            Whether to use global backpropgation through all workers in contrastive loss.
        skip_unmasked_multimodal_encoder (`bool`, *optional*, defaults to `True`):
            Whether to skip running unmasked multimodal encoder whose outputs are not used by FLAVA losses.
        return_loss (`bool`, *optional*, defaults to `True`):
            Whether to return loss or not

        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import FlavaConfig, FlavaModel, FlavaForPreTraining

    >>> # Initializing a FlavaConfig with style configuration
    >>> configuration = FlavaConfig()

    >>> # Initializing a FlavaModel and FlavaForPreTraining model (with random weights) from the style configuration
    >>> model = FlavaModel(configuration)
    >>> model_pre = FlavaForPreTraining(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    >>> configuration_pre = model_pre.config
    ```
    Zflava)r9   r	   rD   rH   Nr
   r   T/L
F@r         ?r	   r9   rD   rH   r   r   projection_diminit_codebooklogit_scale_init_valuer   ce_ignore_index
mim_weight
mlm_weightglobal_contrastive_weight
itm_weightmmm_image_weightmmm_text_weightglobal_backprop_contrastive skip_unmasked_multimodal_encoderreturn_lossc           !         s  | dd }| dd }| dd }| dd }t jdi | |d uri|d u r+i }tdi | }| D ]+\}}||v rc||| krc|dvrc||v rXd| d| d}nd	| d
}t| q8|| |d ur|d u rsi }t	di | }d|v rdd |d  D |d< | D ]+\}}||v r||| kr|dvr||v rd| d| d}nd| d
}t| q|| |d ur|d u ri }t
di | }| D ].\}}||v r||| kr|dvr||v rd| d| d}nd| d
}t| q|| |d ur]|d u ri }tdi | } |  D ]0\}}||v rV||| krV|dvrV||v rKd| d| d}nd| d
}t| q'||  |d u rii }td |d u rui }td |d u ri }td |d u ri }td t	di || _tdi || _t
di || _tdi || _|| _|| _|| _|| _|
| _|	| _d| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _ d S )Ntext_config_dictimage_config_dictmultimodal_config_dictimage_codebook_config_dict)Ztransformers_version`zp` is found in both `text_config_dict` and `text_config` but with different values. The value `text_config_dict["z"]` will be used instead.zk`text_config_dict` is provided which will be used to initialize `FlavaTextConfig`. The value `text_config["z"]` will be overridden.Zid2labelc                 S   s   i | ]	\}}t ||qS r$   )rB   ).0keyvaluer$   r$   r+   
<dictcomp>!  s    z(FlavaConfig.__init__.<locals>.<dictcomp>zs` is found in both `image_config_dict` and `image_config` but with different values. The value `image_config_dict["zn`image_config_dict` is provided which will be used to initialize `FlavaImageConfig`. The value `image_config["z` is found in both `multimodal_config_dict` and `multimodal_config` but with different values. The value `multimodal_config_dict["z}`multimodal_config_dict` is provided which will be used to initialize `FlavaMultimodalConfig`. The value `multimodal_config["z` is found in both `image_codebook_config_dict` and `image_codebook_config` but with different values. The value `image_codebook_config_dict["z`image_codebook_config_dict` is provided which will be used to initialize `FlavaImageCodebookConfig`. The value `image_codebook_config["zR`image_config` is `None`. initializing the `FlavaImageConfig` with default values.zP`text_config` is `None`. Initializing the `FlavaTextConfig` with default values.z\`multimodal_config` is `None`. initializing the `FlavaMultimodalConfig` with default values.zc`image_codebook_config` is `None`. initializing the `FlavaImageCodebookConfig` with default values.rR   r$   )!popr%   r&   r8   to_dictitemsloggerinfoupdater   rC   rG   r	   r9   rD   rH   rS   rT   r   r   r   rU   Zinitializer_factorrV   rW   rX   rY   rZ   r[   r\   r]   r^   r_   )!r'   r	   r9   rD   rH   r   r   rS   rT   rU   r   rV   rW   rX   rY   rZ   r[   r\   r]   r^   r_   r(   r`   ra   rb   rc   Z_text_config_dictrf   rg   messageZ_image_config_dictZ_multimodal_config_dictZ_image_codebook_config_dictr)   r$   r+   r&     s   

























zFlavaConfig.__init__c                 K   s(   | d|  |  |  |  d|S )a&  
        Instantiate a [`FlavaConfig`] (or a derived class) from flava text model configuration, flava image model
        configuration, flava multimodal model and flava codebook model configuration.

        Returns:
            [`FlavaConfig`]: An instance of a configuration object
        )r	   r9   rD   rH   Nr$   )rj   )clsr	   r9   rD   rH   r(   r$   r$   r+   from_configs  s   zFlavaConfig.from_configs)NNNNr
   r   r
   TrP   r   rQ   rR   rR   rR   rR   rR   rR   TTT)r.   r/   r0   r1   r2   r8   r   rC   rG   Zsub_configsr   r   rB   r   r4   r5   r6   r&   classmethodrq   r7   r$   r$   r)   r+   rO     s    E		
 KrO   )rO   rG   r   rC   r8   N)r1   typingr   r   r   Zconfiguration_utilsr   utilsr   Z
get_loggerr.   rl   r   r8   rC   rG   rO   __all__r$   r$   r$   r+   <module>   s   
fqVD  4