o
    Zh\                     @   sf   d dl mZ d dlmZ d dlmZ ddlmZ ee	Z
G dd deZG dd	 d	eZdd	gZd
S )   )PretrainedConfig)rope_config_validation)logging   )
AutoConfigc                       s\   e Zd ZdZdZdZdgZ							
																d fdd	Z  ZS )CsmDepthDecoderConfigaD  
    This is the configuration class to store the configuration of a [`CsmDepthDecoderModel`]. It is used to instantiate an CSM depth decoder
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield
    a similar configuration to that of the csm-1b.

    e.g. [eustlb/csm-1b](https://huggingface.co/eustlb/csm-1b)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        num_codebooks (`int`, *optional*, defaults to 32):
            Number of codebooks used in the underlying codec model responsible for tokenizing the audio.
        backbone_hidden_size (`int`, *optional*, defaults to 2048):
            Dimension of the hidden representations of the backbone model used with this depth decoder.
        vocab_size (`int`, *optional*, defaults to 2051):
            Vocabulary size of the CsmDepthDecoder model. Defines the number of different audio tokens that can be represented by each codebook.
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 8192):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 4):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 2):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 33):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 2050):
            Padding token id.
        bos_token_id (`int`, *optional*):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*):
            End of stream token id.
        rope_theta (`float`, *optional*, defaults to 500000):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
        head_dim (`int`, *optional*):
            The attention head dimension. If None, it will default to hidden_size // num_attention_heads

    ```python
    >>> from transformers import CsmDepthDecoder, CsmDepthDecoderConfig

    >>> # Initializing a CsmDepthDecoder
    >>> configuration = CsmDepthDecoderConfig()
    >>> model = CsmDepthDecoderModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zcsm_depth_decoder_modeldepth_decoder_configpast_key_values                      r   silu!   {Gz?h㈵>TN  F        c                    s   | ddr
tdt jd|||dd| || _|| _|| _|
| _|| _|| _	|| _
|| _|d u r6|}|| _|	| _|| _|| _|| _|| _|| _|| _|| _|| _|d urZ|n| j| j | _| jd ursd| jv rs| jd | jd< t|  d S )Ntie_word_embeddingsFzE`tie_word_embeddings=True` is not supported for CsmDepthDecoderConfigpad_token_idbos_token_ideos_token_idr   type	rope_type )pop
ValueErrorsuper__init__num_codebooks
vocab_sizebackbone_hidden_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetarope_scalingattention_biasattention_dropoutmlp_biashead_dimr   )selfr#   r%   r$   r'   r(   r)   r*   r+   r,   r&   r-   r.   r/   r   r   r   r0   r1   r2   r3   r4   r5   kwargs	__class__r   X/var/www/auris/lib/python3.10/site-packages/transformers/models/csm/configuration_csm.pyr"      sD   zCsmDepthDecoderConfig.__init__)r
   r   r   r   r   r   r   r   r   r   r   r   TNNNr   NFr   FN)	__name__
__module____qualname____doc__
model_typebase_config_keykeys_to_ignore_at_inferencer"   __classcell__r   r   r8   r:   r      s8    nr   c                       st   e Zd ZdZdZdZdgZeedZ							
																									d fdd	Z
  ZS )	CsmConfiga!  
    This is the configuration class to store the configuration of a [`CsmForConditionalGeneration`]. It is used to instantiate an CSM
    model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the csm-1b.

    e.g. [eustlb/csm-1b](https://huggingface.co/eustlb/csm-1b)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        num_codebooks (`int`, *optional*, defaults to 32):
            Number of codebooks used in the underlying codec model responsible for tokenizing the audio.
        vocab_size (`int`, *optional*, defaults to 2051):
            Vocabulary size of the Csm model. Defines the number of different audio tokens that can be represented by each codebook.
        text_vocab_size (`int`, *optional*, defaults to 128256):
            Vocabulary size of the text input for the Csm model. Defines the number of different text tokens that can be represented.
        hidden_size (`int`, *optional*, defaults to 2048):
            Dimension of the hidden representations of the backbone model.
        intermediate_size (`int`, *optional*, defaults to 8192):
            Dimension of the MLP representations of the backbone model.
        num_hidden_layers (`int`, *optional*, defaults to 16):
            Number of hidden layers in the backbone model Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the backbone model Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf).
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the backbone model Transformer decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 128002):
            Padding token id.
        codebook_pad_token_id (`int`, *optional*, defaults to 2050):
            Padding token id for codebook tokens.
        codebook_eos_token_id (`int`, *optional*, defaults to 0):
            End of stream token id for codebook tokens.
        bos_token_id (`int`, *optional*, defaults to 128000):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*):
            End of stream token id.
        audio_token_id (`int`, *optional*, defaults to 128002):
            Audio token id in the text input.
        audio_eos_token_id (`int`, *optional*, defaults to 128003):
            End of stream token id for audio in the text input.
        rope_theta (`float`, *optional*, defaults to 500000):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*, defaults to `{'factor': 32.0, 'high_freq_factor': 0.5, 'low_freq_factor': 0.125, 'original_max_position_embeddings': 1024, 'rope_type': 'llama3'}`):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
        head_dim (`int`, *optional*):
            The attention head dimension. If None, it will default to hidden_size // num_attention_heads
        tie_codebooks_embeddings (`bool`, *optional*, defaults to `True`):
            Whether to tie the codebook tokens embeddings of the backbone model to the codebook tokens embeddings of the depth decoder.
        depth_decoder_config (`CsmDepthDecoderConfig`, *optional*):
            Configuration for the depth decoder.
        codec_config (`PretrainedConfig`, *optional*):
            Configuration for the codec.

    ```python
    >>> from transformers import CsmForConditionalGeneration, CsmConfig

    >>> # Initializing a CsmConfig
    >>> configuration = CsmConfig()

    >>> # Initializing a model
    >>> model = CsmForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZcsmZ
csm_configr	   )codec_configr   r
   r     r   r      r   r   r   r   T         N r   Fr   c                    s  | ddr
tdt jd
|||dd| |d u r&t | _td nt|t	r4td
i || _nt|tr<|| _|d u rLt
d| _td nt|t	r[t
jd
i || _nt|trc|| _|| _|| _|| _|| _|| _|| _|| _|| _|
| _|| _|| _|| _|| _|d u r|}|| _|	| _|| _|| _|| _|| _ || _!|| _"|| _#|| _$|d ur|n| j| j | _%| j!d urd| j!v r| j!d | j!d	< t&|  d S )Nr   Fz9`tie_word_embeddings=True` is not supported for CsmConfigr   zAdepth_decoder_config is None, using default depth decoder config.Zmimiz9codec_config is None, using default audio encoder config.r   r   r   )'r   r    r!   r"   r   r   loggerinfo
isinstancedictr   Z	for_modelrD   r   text_vocab_sizer#   audio_token_idaudio_eos_token_idcodebook_pad_token_idcodebook_eos_token_idtie_codebooks_embeddingsr$   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r   )r6   r#   r$   rP   r'   r(   r)   r*   r+   r,   r&   r-   r.   r/   r   rS   rT   r   r   rQ   rR   r0   r1   r2   r3   r4   r5   rU   r   rD   r7   r8   r   r:   r"   T  sj   !



zCsmConfig.__init__)r
   r   rE   r   r   rF   r
   r   r   r   r   r   TrG   rH   rI   rJ   NrG   rK   r   NFr   FNTNN)r;   r<   r=   r>   r?   r@   rA   r   r   Zsub_configsr"   rB   r   r   r8   r:   rC      sL    |rC   N)Zconfiguration_utilsr   Zmodeling_rope_utilsr   utilsr   Zauto.configuration_autor   Z
get_loggerr;   rL   r   rC   __all__r   r   r   r:   <module>   s   
 7 h