o
    ZhcO                     @   s   d Z ddlZddlmZmZ er	 ddlmZ ddlmZ e	e
ZG dd deZG d	d
 d
eZG dd deZg dZdS )zCLVP model configuration    N)TYPE_CHECKINGUnion   )PretrainedConfig)loggingc                       sv   e Zd ZdZdZddgZ								
									d fdd	Ze	ddee	e
jf de	ddfddZ  ZS )ClvpEncoderConfigak  
    This is the configuration class to store the configuration of a [`ClvpEncoder`]. It is used to instantiate a CLVP
    text or CLVP speech encoder according to the specified arguments. Instantiating a configuration with the defaults
    will yield a similar configuration to that of the encoder of the CLVP
    [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 256):
            Vocabulary size of the CLVP Encoder model.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 1536):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        projection_dim (`int`, *optional*, defaults to 768):
            Dimensionality of the projection vector.
        num_hidden_layers (`int`, *optional*, defaults to 20):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the feed-forward layers in [`ClvpEncoderMLP`].
        use_rotary_embedding (`bool`, *optional*, defaults to `True`):
            Whether to use rotary_embedding or not.
        use_attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias in Query, Key and Value layers during self attention.
        summary_type (`str`, *optional*, defaults to `"mean"`):
            What strategy to use to get pooler_output from the last_hidden_state. `"last"`, `"first"`, `"mean"` and
            `"cls_index"` are supported.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
            testing).
        bos_token_id (`int`, *optional*, defaults to 255):
            Beginning of sequence token id.
        eos_token_id (`int`, *optional*, defaults to 0):
            End of sequence token id.

    Example:

    ```python
    >>> from transformers import ClvpEncoderConfig, ClvpEncoder

    >>> # Initializing a ClvpEncoderConfig with susnato/clvp_dev style configuration
    >>> encoder_configuration = ClvpEncoderConfig()

    >>> # Initializing a ClvpEncoder (with random weights) from the susnato/clvp_dev style configuration
    >>> model = ClvpEncoder(encoder_configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zclvp_encodertext_configspeech_config               geluh㈵>皙?TFmean      ?   r   c                    s|   || _ || _|| _|| _|| _|| _|| _|| _|| _|	| _	|
| _
|| _|| _|| _|| _|| _t jd||d| d S N)bos_token_ideos_token_id )
vocab_sizehidden_sizeintermediate_sizeprojection_dimnum_hidden_layersnum_attention_headslayer_norm_eps
hidden_actinitializer_factorattention_dropoutdropoutuse_rotary_embeddinguse_attention_biassummary_typer   r   super__init__)selfr   r   r   r   r   r   r    r   r"   r#   r$   r%   r&   r!   r   r   kwargs	__class__r   Z/var/www/auris/lib/python3.10/site-packages/transformers/models/clvp/configuration_clvp.pyr(   `   s"   zClvpEncoderConfig.__init__pretrained_model_name_or_pathconfig_typereturnr   c                 K   s   |  | | j|fi |\}}|| jvrtd| |ddkr'|| }d|v rFt| drF|d | jkrFtd|d  d| j d | j	|fi |S )NzSWe can only load either 'text_config' or 'speech_config' but you are trying to load
model_typeclvpzYou are using a model of type z  to instantiate a model of type zN. This is not supported for all configurations of models and can yield errors.)
Z_set_token_in_kwargsZget_config_dictbase_config_key
ValueErrorgethasattrr1   loggerwarning	from_dict)clsr.   r/   r*   Zconfig_dictr   r   r-   from_pretrained   s   

 z!ClvpEncoderConfig.from_pretrained)r
   r   r   r   r   r   r   r   r   r   TFr   r   r   r   )r   )__name__
__module____qualname____doc__r1   r3   r(   classmethodr   strosPathLiker;   __classcell__r   r   r+   r-   r      s<    ='r   c                       sb   e Zd ZdZdZdZdddddd	d
dddddddddd
ddddddddg df fdd	Z  ZS )ClvpDecoderConfigaN  
    This is the configuration class to store the configuration of a [`ClvpDecoder`]. It is used to instantiate a CLVP
    Decoder Model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Decoder part of the CLVP
    [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    The architecture is similar to GPT2.

    Args:
        vocab_size (`int`, *optional*, defaults to 8194):
            Vocabulary size of the model.
        max_position_embeddings (`int`, *optional*, defaults to 608):
            The maximum sequence length of mel tokens that this model might ever be used with. Similar to `n_positions`
            in `GPT2Config`.
        max_text_tokens (`int`, *optional*, defaults to 404):
            The maximum sequence length of text tokens that this model might ever be used with. Similar to
            `n_positions` in `GPT2Config`.
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the embeddings and hidden states.
        num_hidden_layers (`int`, *optional*, defaults to 30):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        n_inner (`int`, *optional*):
            Dimensionality of the inner feed-forward layers. `None` will set it to 4 times `hidden_size`.
        num_mel_attn_blocks (`int`, *optional*, defaults to 6):
            Denotes the number of self attention layers in [`ClvpConditioningEncoder`].
        activation_function (`str`, *optional*, defaults to `"gelu_new"`):
            Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
        resid_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        embd_pdrop (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the embeddings.
        attention_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
            The epsilon to use in the layer normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        summary_type (`string`, *optional*, defaults to `"cls_index"`):
            Argument used when doing sequence summary.

            Has to be one of the following options:

                - `"last"`: Take the last token hidden state (like XLNet).
                - `"first"`: Take the first token hidden state (like BERT).
                - `"mean"`: Take the mean of all tokens hidden states.
                - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
                - `"attn"`: Not implemented now, use multi-head attention.
        summary_use_proj (`bool`, *optional*, defaults to `True`):
            Whether or not to add a projection after the vector extraction.
        summary_activation (`str`, *optional*):
            Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
        summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
            Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
        summary_first_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio to be used after the projection and activation.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        bos_token_id (`int`, *optional*, defaults to 8192):
            Beginning of sequence token id, used at the start of the generation.
        eos_token_id (`int`, *optional*, defaults to 8193):
            End of sequence token id, used in the method
            [`ClvpModelForConditionalGeneration.fix_speech_decoder_output()`] to correct decoder outputs.
        feature_size (`int`, *optional*, defaults to 80):
            The feature dimension of the extracted mel features. This value is used in [`ClvpConditioningEncoder`].
        use_attention_bias (`bool`, *optional*, defaults to `True`):
            Whether to use bias in Query, Key and Value layers during self attention.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
            testing).
        decoder_fixing_codes (`list`, *optional*, defaults to `[83, 45, 45, 248]`):
            These values are used in the method `fix_speech_decoder_output` to fix decoder generated outputs.

    Example:

    ```python
    >>> from transformers import ClvpDecoderConfig, ClvpDecoder

    >>> # Initializing a ClvpDecoderConfig with susnato/clvp_dev style configuration
    >>> decoder_configuration = ClvpDecoderConfig()

    >>> # Initializing a ClvpDecoder (with random weights) from the susnato/clvp_dev style configuration
    >>> model = ClvpDecoder(decoder_configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zclvp_decoderdecoder_configi   i`  i  i         N   Zgelu_newr   r   g{Gz?Z	cls_indexTi    i   P   r   )S   -   rL      c                    s   || _ || _|| _|| _|| _|| _|| _|| _|	| _|
| _	|| _
|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _|| _t jd||d| d S r   )r   max_position_embeddingsmax_text_tokensr   r   r   n_innernum_mel_attn_blocksactivation_functionresid_pdrop
embd_pdropr"   layer_norm_epsiloninitializer_ranger&   summary_use_projsummary_activationsummary_first_dropoutsummary_proj_to_labels	use_cachefeature_sizer%   r!   decoder_fixing_codesr   r   r'   r(   )r)   r   rN   rO   r   r   r   rP   rQ   rR   rS   rT   r"   rU   rV   r&   rW   rX   rZ   rY   r[   r   r   r\   r%   r!   r]   r*   r+   r   r-   r(     s6   zClvpDecoderConfig.__init__)r<   r=   r>   r?   r1   r3   r(   rD   r   r   r+   r-   rE      s>    \rE   c                       sX   e Zd ZdZdZeeedZ						d fdd		Ze	d
ededefddZ
  ZS )
ClvpConfigaQ
  
    [`ClvpConfig`] is the configuration class to store the configuration of a [`ClvpModelForConditionalGeneration`]. It
    is used to instantiate a CLVP model according to the specified arguments, defining the text model, speech model and
    decoder model configs. Instantiating a configuration with the defaults will yield a similar configuration to that
    of the CLVP [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize the CLVP text encoder.
        speech_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize CLVP speech encoder.
        decoder_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`ClvpDecoderConfig`].
        projection_dim (`int`, *optional*, defaults to 768):
            Dimensionality of text and speech projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter. Default is used as per the original CLVP implementation.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
            testing).
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import ClvpConfig, ClvpModelForConditionalGeneration

    >>> # Initializing a ClvpConfig with susnato/clvp_dev style configuration
    >>> configuration = ClvpConfig()

    >>> # Initializing a ClvpModelForConditionalGeneration (with random weights) from the susnato/clvp_dev style configuration
    >>> model = ClvpModelForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a CLVPConfig from a CLVPTextConfig, CLVPSpeechConfig and a CLVPAutoRegressiveConfig
    >>> from transformers import ClvpEncoderConfig, ClvpDecoderConfig

    >>> # Initializing a CLVP text, CLVP speech and CLVP decoder configuration
    >>> config_text = ClvpEncoderConfig()
    >>> config_speech = ClvpEncoderConfig()
    >>> decoder_config = ClvpDecoderConfig()

    >>> config = ClvpConfig.from_sub_model_configs(config_text, config_speech, decoder_config)
    ```r2   r   r	   rF   Nr   /L
F@r   c                    s   t  jdi | |d u ri }td |d u ri }td |d u r*i }td tdi || _tdi || _tdi || _|| _	|| _
|| _d S )NzR`text_config` is `None`. Initializing the `ClvpEncoderConfig` with default values.zT`speech_config` is `None`. initializing the `ClvpEncoderConfig` with default values.zU`decoder_config` is `None`. initializing the `ClvpDecoderConfig` with default values.r   )r'   r(   r7   infor   r   r	   rE   rF   r   logit_scale_init_valuer!   )r)   r   r	   rF   r   rb   r!   r*   r+   r   r-   r(   {  s    




zClvpConfig.__init__r   r	   rF   c                 K   s"   | d|  |  |  d|S )a  
        Instantiate a [`ClvpConfig`] (or a derived class) from CLVP text model configuration, CLVP speech model
        configuration and CLVP decoder model configuration.

        Args:
            text_config (`ClvpEncoderConfig`):
                Text model configuration of type [`ClvpEncoderConfig`].
            speech_config (`ClvpEncoderConfig`):
                Speech model configuration of type [`ClvpEncoderConfig`].
            decoder_config (`ClvpDecoderConfig`):
                Decoder model configuration of type [`ClvpDecoderConfig`].

        Returns:
            [`ClvpConfig`]: An instance of a configuration object
        r_   Nr   )to_dict)r:   r   r	   rF   r*   r   r   r-   from_sub_model_configs  s   z!ClvpConfig.from_sub_model_configs)NNNr   r`   r   )r<   r=   r>   r?   r1   r   rE   Zsub_configsr(   r@   rd   rD   r   r   r+   r-   r^   @  s,    3 r^   )r^   rE   r   )r?   rB   typingr   r   Zconfiguration_utilsr   utilsr   Z
get_loggerr<   r7   r   rE   r^   __all__r   r   r   r-   <module>   s   
  {