o
    ZŽh™K  ã                   @   sb   d Z ddlmZ ddlmZ e e¡ZG dd„ deƒZG dd„ deƒZ	G dd	„ d	eƒZ
g d
¢ZdS )zCLIPSeg model configurationé   )ÚPretrainedConfig)Úloggingc                       sF   e Zd ZdZdZdZ								
							d‡ fdd„	Z‡  ZS )ÚCLIPSegTextConfiga  
    This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
    CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CLIPSeg
    [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 49408):
            Vocabulary size of the CLIPSeg text model. Defines the number of different tokens that can be represented
            by the `inputs_ids` passed when calling [`CLIPSegModel`].
        hidden_size (`int`, *optional*, defaults to 512):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 8):
            Number of attention heads for each attention layer in the Transformer encoder.
        max_position_embeddings (`int`, *optional*, defaults to 77):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 49406):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 49407):
            End of stream token id.

    Example:

    ```python
    >>> from transformers import CLIPSegTextConfig, CLIPSegTextModel

    >>> # Initializing a CLIPSegTextConfig with CIDAS/clipseg-rd64 style configuration
    >>> configuration = CLIPSegTextConfig()

    >>> # Initializing a CLIPSegTextModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
    >>> model = CLIPSegTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zclipseg_text_modelÚtext_configé Á  é   é   é   é   éM   Ú
quick_geluçñhãˆµøä>ç        ç{®Gáz”?ç      ð?é   éþÀ  éÿÀ  c                    s`   t ƒ jd|||dœ|¤Ž || _|| _|| _|| _|| _|| _|| _|| _	|
| _
|| _|	| _d S )N)Úpad_token_idÚbos_token_idÚeos_token_id© )ÚsuperÚ__init__Ú
vocab_sizeÚhidden_sizeÚintermediate_sizeÚnum_hidden_layersÚnum_attention_headsÚmax_position_embeddingsÚlayer_norm_epsÚ
hidden_actÚinitializer_rangeÚinitializer_factorÚattention_dropout)Úselfr   r   r   r   r   r   r!   r    r$   r"   r#   r   r   r   Úkwargs©Ú	__class__r   ú`/var/www/auris/lib/python3.10/site-packages/transformers/models/clipseg/configuration_clipseg.pyr   V   s   
zCLIPSegTextConfig.__init__)r   r   r   r	   r
   r   r   r   r   r   r   r   r   r   ©Ú__name__Ú
__module__Ú__qualname__Ú__doc__Ú
model_typeZbase_config_keyr   Ú__classcell__r   r   r'   r)   r      s&    :ñr   c                       sB   e Zd ZdZdZdZ									
				d‡ fdd„	Z‡  ZS )ÚCLIPSegVisionConfigaG  
    This is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to instantiate an
    CLIPSeg model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CLIPSeg
    [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import CLIPSegVisionConfig, CLIPSegVisionModel

    >>> # Initializing a CLIPSegVisionConfig with CIDAS/clipseg-rd64 style configuration
    >>> configuration = CLIPSegVisionConfig()

    >>> # Initializing a CLIPSegVisionModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
    >>> model = CLIPSegVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zclipseg_vision_modelÚvision_configé   é   r	   r   éà   é    r   r   r   r   r   c                    s^   t ƒ jdi |¤Ž || _|| _|| _|| _|| _|| _|| _|| _	|| _
|
| _|	| _|| _d S )Nr   )r   r   r   r   r   r   Únum_channelsÚ
patch_sizeÚ
image_sizer"   r#   r$   r    r!   )r%   r   r   r   r   r7   r9   r8   r!   r    r$   r"   r#   r&   r'   r   r)   r   ¯   s   
zCLIPSegVisionConfig.__init__)r3   r4   r	   r	   r   r5   r6   r   r   r   r   r   r*   r   r   r'   r)   r1   w   s"    4ór1   c                       sb   e Zd ZdZdZeedœZddddg d¢dd	d
ddddf‡ fdd„	Ze	dedefdd„ƒZ
‡  ZS )ÚCLIPSegConfiga  
    [`CLIPSegConfig`] is the configuration class to store the configuration of a [`CLIPSegModel`]. It is used to
    instantiate a CLIPSeg model according to the specified arguments, defining the text model and vision model configs.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the CLIPSeg
    [CIDAS/clipseg-rd64](https://huggingface.co/CIDAS/clipseg-rd64) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`CLIPSegTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`CLIPSegVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter. Default is used as per the original CLIPSeg implementation.
        extract_layers (`List[int]`, *optional*, defaults to `[3, 6, 9]`):
            Layers to extract when forwarding the query image through the frozen visual backbone of CLIP.
        reduce_dim (`int`, *optional*, defaults to 64):
            Dimensionality to reduce the CLIP vision embedding.
        decoder_num_attention_heads (`int`, *optional*, defaults to 4):
            Number of attention heads in the decoder of CLIPSeg.
        decoder_attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        decoder_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        decoder_intermediate_size (`int`, *optional*, defaults to 2048):
            Dimensionality of the "intermediate" (i.e., feed-forward) layers in the Transformer decoder.
        conditional_layer (`int`, *optional*, defaults to 0):
            The layer to use of the Transformer encoder whose activations will be combined with the condition
            embeddings using FiLM (Feature-wise Linear Modulation). If 0, the last layer is used.
        use_complex_transposed_convolution (`bool`, *optional*, defaults to `False`):
            Whether to use a more complex transposed convolution in the decoder, enabling more fine-grained
            segmentation.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import CLIPSegConfig, CLIPSegModel

    >>> # Initializing a CLIPSegConfig with CIDAS/clipseg-rd64 style configuration
    >>> configuration = CLIPSegConfig()

    >>> # Initializing a CLIPSegModel (with random weights) from the CIDAS/clipseg-rd64 style configuration
    >>> model = CLIPSegModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a CLIPSegConfig from a CLIPSegTextConfig and a CLIPSegVisionConfig

    >>> # Initializing a CLIPSegText and CLIPSegVision configuration
    >>> config_text = CLIPSegTextConfig()
    >>> config_vision = CLIPSegVisionConfig()

    >>> config = CLIPSegConfig.from_text_vision_configs(config_text, config_vision)
    ```Zclipseg©r   r2   Nr   gƒ/L¦
F@)r   é   é	   é@   é   r   r   r   é    Fc                    sþ  |  dd ¡}|  dd ¡}tƒ jdi |¤Ž |d ur]|d u ri }tdi |¤Ž ¡ }| ¡ D ]+\}}||v rW||| krW|dvrW||v rLd|› d|› d}nd|› d}t |¡ q,| |¡ |d ur¶|d u rgi }t	di |¤Ž ¡ }d	|v rd
d„ |d	  ¡ D ƒ|d	< | ¡ D ]+\}}||v r°||| kr°|dvr°||v r¥d|› d|› d}nd|› d}t |¡ q…| |¡ |d u rÁi }t d¡ |d u rÌi }t d¡ tdi |¤Ž| _
t	di |¤Ž| _|| _|| _|| _|| _|| _|| _|	| _|
| _|| _d| _|| _d S )NÚtext_config_dictÚvision_config_dict)Ztransformers_versionú`zp` is found in both `text_config_dict` and `text_config` but with different values. The value `text_config_dict["z"]` will be used instead.zm`text_config_dict` is provided which will be used to initialize `CLIPSegTextConfig`. The value `text_config["z"]` will be overridden.Zid2labelc                 S   s   i | ]	\}}t |ƒ|“qS r   )Ústr)Ú.0ÚkeyÚvaluer   r   r)   Ú
<dictcomp>P  s    ÿz*CLIPSegConfig.__init__.<locals>.<dictcomp>zv` is found in both `vision_config_dict` and `vision_config` but with different values. The value `vision_config_dict["zs`vision_config_dict` is provided which will be used to initialize `CLIPSegVisionConfig`. The value `vision_config["zR`text_config` is `None`. Initializing the `CLIPSegTextConfig` with default values.zV`vision_config` is `None`. initializing the `CLIPSegVisionConfig` with default values.r   r   )Úpopr   r   r   Úto_dictÚitemsÚloggerÚinfoÚupdater1   r   r2   Úprojection_dimÚlogit_scale_init_valueÚextract_layersÚ
reduce_dimÚdecoder_num_attention_headsÚdecoder_attention_dropoutÚdecoder_hidden_actÚdecoder_intermediate_sizeÚconditional_layerr#   Ú"use_complex_transposed_convolution)r%   r   r2   rO   rP   rQ   rR   rS   rT   rU   rV   rW   rX   r&   rA   rB   Z_text_config_dictrF   rG   ÚmessageZ_vision_config_dictr'   r   r)   r     s|   ÿÿÿÿ
€


ÿÿÿÿÿ
€



zCLIPSegConfig.__init__r   r2   c                 K   s   | d|  ¡ |  ¡ dœ|¤ŽS )zó
        Instantiate a [`CLIPSegConfig`] (or a derived class) from clipseg text model configuration and clipseg vision
        model configuration.

        Returns:
            [`CLIPSegConfig`]: An instance of a configuration object
        r;   Nr   )rJ   )Úclsr   r2   r&   r   r   r)   Úfrom_text_vision_configs  s   
z&CLIPSegConfig.from_text_vision_configs)r+   r,   r-   r.   r/   r   r1   Zsub_configsr   Úclassmethodr[   r0   r   r   r'   r)   r:   Ï   s&    ?
ómr:   )r:   r   r1   N)r.   Zconfiguration_utilsr   Úutilsr   Z
get_loggerr+   rL   r   r1   r:   Ú__all__r   r   r   r)   Ú<module>   s   
_X >