o
    Zh                     @   s@   d Z ddlmZ ddlmZ eeZG dd deZdgZ	dS )zBitNet model configuration   )PretrainedConfig)loggingc                       sP   e Zd ZdZdZdgZ								
											d fdd	Z  ZS )BitNetConfiga  
    This is the configuration class to store the configuration of a [`BitNetModel`]. It is used to instantiate an BitNet
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of
    BitNet b1.58 2B4T [microsoft/bitnet-b1.58-2B-4T](https://huggingface.co/microsoft/bitnet-b1.58-2B-4T).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 128256):
            Vocabulary size of the BitNet model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`BitNetModel`]
        hidden_size (`int`, *optional*, defaults to 2560):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 6912):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 30):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 20):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 5):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 128000):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 128001):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 500000.0):
            The base period of the RoPE embeddings.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import BitNetModel, BitNetConfig

    >>> # Initializing a BitNet style configuration
    >>> configuration = BitNetConfig()

    >>> # Initializing a model from the BitNet style configuration
    >>> model = BitNetModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```ZbitnetZpast_key_values   
              relu2   {Gz?h㈵>TN   F    A        c                    s   || _ || _|| _|| _|| _|| _|d u r|}|| _|| _|	| _|
| _	|| _
|| _|| _|| _t jd||||d| d S )N)pad_token_idbos_token_ideos_token_idtie_word_embeddings )
vocab_sizemax_position_embeddingshidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cache
rope_thetaattention_biasattention_dropoutsuper__init__)selfr   r   r   r   r   r   r   r   r    r!   r"   r   r   r   r   r#   r$   r%   kwargs	__class__r   ^/var/www/auris/lib/python3.10/site-packages/transformers/models/bitnet/configuration_bitnet.pyr'   `   s0   
zBitNetConfig.__init__)r   r   r   r   r	   r
   r   r   r   r   TNr   r   Fr   Fr   )__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferencer'   __classcell__r   r   r*   r,   r      s.    Er   N)
r0   Zconfiguration_utilsr   utilsr   Z
get_loggerr-   loggerr   __all__r   r   r   r,   <module>   s   

|