o
    Zh&                     @   s@   d Z ddlmZ ddlmZ eeZG dd deZdgZ	dS )zBamba model configuration   )PretrainedConfig)loggingc                       sn   e Zd ZdZdZdgZ									
																			d fdd	Zedd Z  Z	S )BambaConfiga9  
    This is the configuration class to store the configuration of a [`BambaModel`]. It is used to instantiate a
    BambaModel model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with defaults taken from [ibm-fms/Bamba-9.8b-2.2T-hf](https://huggingface.co/ibm-fms/Bamba-9.8b-2.2T-hf).

    The BambaModel is a hybrid [mamba2](https://github.com/state-spaces/mamba) architecture with SwiGLU.
    The checkpoints are  jointly trained by IBM, Princeton, and UIUC.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 128000):
            Vocabulary size of the Bamba model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`BambaModel`]
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
            model has an output word embedding layer.
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
            Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
            integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the
            logits of the last prompt token are needed for generation. For long sequences, the logits for the entire
            sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint
            significantly.
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        max_position_embeddings (`int`, *optional*, defaults to 262144):
            Max cached sequence length for the model
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        attn_layer_indices (`list`, *optional*):
            Specifies the layer indices that will have full attention. Must contain values at most num_hidden_layers.
        mamba_n_heads (`int`, *optional*, defaults to 128):
            The number of mamba heads used in the v2 implementation.
        mamba_d_head (`int`, *optional*, defaults to `"auto"`):
            Head embedding dimension size
        mamba_n_groups (`int`, *optional*, defaults to 1):
            The number of the mamba groups used in the v2 implementation.
        mamba_d_state (`int`, *optional*, defaults to 256):
            The dimension the mamba state space latents
        mamba_d_conv (`int`, *optional*, defaults to 4):
            The size of the mamba convolution kernel
        mamba_expand (`int`, *optional*, defaults to 2):
            Expanding factor (relative to hidden_size) used to determine the mamba intermediate size
        mamba_chunk_size (`int`, *optional*, defaults to 256):
            The chunks in which to break the sequence when doing prefill/training
        mamba_conv_bias (`bool`, *optional*, defaults to `True`):
            Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block.
        mamba_proj_bias (`bool`, *optional*, defaults to `False`):
            Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block

    ZbambaZpast_key_values  F    8         silu{Gz?h㈵>T                     N   auto      c                    s  || _ || _|| _|| _|| _|| _|| _|| _d| _d| _	|d u r$|}|| _
|| _|	| _|
| _|| _|| _|| _d| _d | _d| _|| }|| dkrPtd|dkrX|| }|| |krbtd|| _|| _|| _|| _|| _|| _|| _|| _|| _t jd	||||d| d S )
NFg     @g      ?r   z4mamba_n_heads must divide mamba_expand * hidden_sizer   zPThe dimensions for the Mamba head state do not match the model intermediate_size)pad_token_idbos_token_ideos_token_idtie_word_embeddings ) 
vocab_sizer   hidden_sizeintermediate_sizenum_hidden_layersnum_attention_headsmax_position_embeddingsattention_dropoutZattention_biasZmlp_biasnum_key_value_heads
hidden_actinitializer_rangerms_norm_eps	use_cachenum_logits_to_keepattn_layer_indicesZ
rope_thetaZrope_scalingZpartial_rotary_factor
ValueErrormamba_n_headsmamba_d_headmamba_n_groupsmamba_d_statemamba_d_convmamba_expandmamba_chunk_sizemamba_conv_biasmamba_proj_biassuper__init__)selfr   r   r   r   r   r   r"   r#   r$   r%   r&   r'   r   r   r   r    r!   r(   r*   r+   r,   r-   r.   r/   r0   r1   r2   kwargsZmamba_intermediate	__class__r   \/var/www/auris/lib/python3.10/site-packages/transformers/models/bamba/configuration_bamba.pyr4   m   s\   
zBambaConfig.__init__c                    s    fddt  jD S )Nc                    s$   g | ]} j r| j v rd ndqS )Z	attentionZmamba)r(   ).0ir5   r   r9   
<listcomp>   s    z1BambaConfig.layers_block_type.<locals>.<listcomp>)ranger   r<   r   r<   r9   layers_block_type   s   
zBambaConfig.layers_block_type)r   Fr   r   r   r   r	   r
   r   r   Tr   r   r   r   r   r   Nr   r   r   r   r   r   r   TF)
__name__
__module____qualname____doc__Z
model_typeZkeys_to_ignore_at_inferencer4   propertyr?   __classcell__r   r   r7   r9   r      sD    QYr   N)
rC   Zconfiguration_utilsr   utilsr   Z
get_loggerr@   loggerr   __all__r   r   r   r9   <module>   s   
 
7