o
    Zh)@                     @   sd   d dl mZmZ ddlmZ ddlmZ ddlmZm	Z	 G dd deZ
G d	d
 d
eZd
dgZdS )    )DictOptional   )PretrainedConfig)rope_config_validation   )CONFIG_MAPPING
AutoConfigc                	       s   e Zd ZdZdZdgZddddddddZdgdgfd	d
gd	gfd	gd	gfdZdZ																									d"de	de	de	de	f fd d!Z
  ZS )#AriaTextConfiga>  
    This class handles the configuration for the text component of the Aria model.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Aria
    [rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) architecture.
    This class extends the LlamaConfig to include additional parameters specific to the Mixture of Experts (MoE) architecture.

    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`LlamaModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 4096):
            The size of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
            Llama 2 up to 4096, CodeLlama up to 16384.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*, defaults to 2):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 1):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.
        pretraining_tp (`int`, *optional*, defaults to 1):
            Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
            document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
            understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
            results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
            accordingly.
            Expected contents:
                `rope_type` (`str`):
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
                    'llama3'], with 'default' being the original RoPE implementation.
                `factor` (`float`, *optional*):
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
                    original maximum pre-trained length.
                `original_max_position_embeddings` (`int`, *optional*):
                    Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
                    pretraining.
                `attention_factor` (`float`, *optional*):
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
                    `factor` field to infer the suggested value.
                `beta_fast` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
                    ramp function. If unspecified, it defaults to 32.
                `beta_slow` (`float`, *optional*):
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
                    ramp function. If unspecified, it defaults to 1.
                `short_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `long_factor` (`List[float]`, *optional*):
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
                    size divided by the number of attention heads divided by 2
                `low_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
                `high_freq_factor` (`float`, *optional*):
                    Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
        head_dim (`int`, *optional*):
            The attention head dimension. If None, it will default to hidden_size // num_heads
        moe_num_experts (`int`, *optional*, defaults to 8):
            The number of experts in the MoE layer.
        moe_topk (`int`, *optional*, defaults to 2):
            The number of top experts to route to for each token.
        moe_num_shared_experts (`int`, *optional*, defaults to 2):
            The number of shared experts.
    Z	aria_textZpast_key_valuesZcolwiseZrowwise)zlayers.*.self_attn.q_projzlayers.*.self_attn.k_projzlayers.*.self_attn.v_projzlayers.*.self_attn.o_projzlayers.*.mlp.gate_projzlayers.*.mlp.up_projzlayers.*.mlp.down_projZ	input_idsZinputs_embedsZhidden_statesZattention_mask)Zembed_tokensZlayersZnormtext_config }         Nsilu   {Gz?ư>Tr      F     @           intermediate_sizemoe_num_expertsmoe_topkmoe_num_shared_expertsc                    s   t  jd||||d| || _|| _|| _|| _|| _|| _|d u r&|}|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _|| _|d urM|n| j| j | _| jd urfd| jv rf| jd | jd< t|  || _|| _|| _d S )N)pad_token_idbos_token_ideos_token_idtie_word_embeddingstypeZ	rope_type )super__init__
vocab_sizemax_position_embeddingshidden_sizer   num_hidden_layersnum_attention_headsnum_key_value_heads
hidden_actinitializer_rangerms_norm_epspretraining_tp	use_cache
rope_thetarope_scalingattention_biasattention_dropoutmlp_biashead_dimr   r   r   r   )selfr#   r%   r   r&   r'   r(   r)   r$   r*   r+   r-   r   r   r   r,   r   r.   r/   r0   r1   r2   r3   r   r   r   kwargs	__class__r    Z/var/www/auris/lib/python3.10/site-packages/transformers/models/aria/configuration_aria.pyr"      sD   
zAriaTextConfig.__init__)r   r   r   r   r   Nr   r   r   r   Tr   r   r   r   Fr   NFr   FNr   r   r   )__name__
__module____qualname____doc__
model_typeZkeys_to_ignore_at_inferenceZbase_model_tp_planZbase_model_pp_planZbase_config_keyintr"   __classcell__r    r    r6   r8   r
      sf    j


r
   c                       s^   e Zd ZdZdZddiZeedZ							dd
e	dede
e de	def
 fddZ  ZS )
AriaConfiga  
    This class handles the configuration for both vision and text components of the Aria model,
    as well as additional parameters for image token handling and projector mapping.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Aria
    [rhymes-ai/Aria](https://huggingface.co/rhymes-ai/Aria) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vision_config (`AriaVisionConfig` or `dict`, *optional*):
            Configuration for the vision component.
        vision_feature_layer (`int`, *optional*, defaults to -1):
            The index of the layer to select the vision feature.
        text_config (`AriaTextConfig` or `dict`, *optional*):
            Configuration for the text component.
        projector_patch_to_query_dict (`dict`, *optional*):
            Mapping of patch sizes to query dimensions.
        image_token_index (`int`, *optional*, defaults to 9):
            Index used to represent image tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated normal initializer for initializing all weight matrices.

    Attributes:
        model_type (`str`):
            Type of the model, set to `"aria"`.
        image_token_index (`int`):
            Index used to represent image tokens.
        projector_patch_to_query_dict (`dict`):
            Mapping of patch sizes to query dimensions.
        vision_config (`AriaVisionConfig`):
            Configuration for the vision component.
        text_config (`AriaTextConfig`):
            Configuration for the text component.
    ZariaZimage_token_idimage_token_index)r   vision_configN	   r   vision_feature_layerr   projector_patch_to_query_dictr*   c                    s   || _ |d u rddd}dd | D | _t| j | _|| _t|tr6d|d< t	|d  di |}n	|d u r?t	d  }|| _
|| _t|trVd|v rVtdi |}n|d u r]t }|| _t jdi | d S )	N      )i  i$  c                 S   s   i | ]\}}t |t |qS r    )r>   ).0kvr    r    r8   
<dictcomp>  s    z'AriaConfig.__init__.<locals>.<dictcomp>Zidefics3_visionr=   r    )rA   itemsrF   maxvaluesZ'max_value_projector_patch_to_query_dictrE   
isinstancedictr   rB   r*   r
   r   r!   r"   )r4   rB   rE   r   rF   rA   r*   r5   r6   r    r8   r"   
  s*   


zAriaConfig.__init__)NrC   NNrD   r   )r9   r:   r;   r<   r=   Zattribute_mapr
   r	   Zsub_configsr>   r   r   floatr"   r?   r    r    r6   r8   r@      s.    $
r@   N)typingr   r   Zconfiguration_utilsr   Zmodeling_rope_utilsr   autor   r	   r
   r@   __all__r    r    r    r8   <module>   s    DT