o
    Zh$J                     @   sb   d Z ddlmZ ddlmZ eeZG dd deZG dd deZ	G dd	 d	eZ
g d
ZdS )zAltCLIP model configuration   )PretrainedConfig)loggingc                       sL   e Zd ZdZdZ											
										d fdd	Z  ZS )AltCLIPTextConfiga  
    This is the configuration class to store the configuration of a [`AltCLIPTextModel`]. It is used to instantiate a
    AltCLIP text model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the AltCLIP
    [BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 250002):
            Vocabulary size of the AltCLIP model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`AltCLIPTextModel`].
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 514):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 1):
            The vocabulary size of the `token_type_ids` passed when calling [`AltCLIPTextModel`]
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 0.02):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        pad_token_id (`int`, *optional*, defaults to 1): The id of the *padding* token.
        bos_token_id (`int`, *optional*, defaults to 0): The id of the *beginning-of-sequence* token.
        eos_token_id (`Union[int, List[int]]`, *optional*, defaults to 2):
            The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
        position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
            positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        project_dim (`int`, *optional*, defaults to 768):
            The dimensions of the teacher model before the mapping layer.

    Examples:

    ```python
    >>> from transformers import AltCLIPTextModel, AltCLIPTextConfig

    >>> # Initializing a AltCLIPTextConfig with BAAI/AltCLIP style configuration
    >>> configuration = AltCLIPTextConfig()

    >>> # Initializing a AltCLIPTextModel (with random weights) from the BAAI/AltCLIP style configuration
    >>> model = AltCLIPTextModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zaltclip_text_model             gelu皙?     {Gz?h㈵>       absoluteT   c                    s~   t  jd|||d| || _|| _|| _|| _|| _|| _|| _|| _	|	| _
|
| _|| _|| _|| _|| _|| _|| _d S )N)pad_token_idbos_token_ideos_token_id )super__init__
vocab_sizehidden_sizenum_hidden_layersnum_attention_heads
hidden_actintermediate_sizehidden_dropout_probattention_probs_dropout_probmax_position_embeddingstype_vocab_sizeinitializer_rangeinitializer_factorlayer_norm_epsposition_embedding_type	use_cacheproject_dim)selfr   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r   r   r   r'   r(   r)   kwargs	__class__r   `/var/www/auris/lib/python3.10/site-packages/transformers/models/altclip/configuration_altclip.pyr   c   s"   
zAltCLIPTextConfig.__init__)r   r   r   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   Tr   )__name__
__module____qualname____doc__
model_typer   __classcell__r   r   r,   r.   r      s.    Hr   c                       sD   e Zd ZdZdZdZ									
					d fdd	Z  ZS )AltCLIPVisionConfiga  
    This is the configuration class to store the configuration of a [`AltCLIPModel`]. It is used to instantiate an
    AltCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the AltCLIP
    [BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        projection_dim (`int`, *optional*, defaults to 512):
            Dimensionality of text and vision projection layers.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        initializer_factor (`float`, *optional*, defaults to 1.0):
            A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
            testing).

    Example:

    ```python
    >>> from transformers import AltCLIPVisionConfig, AltCLIPVisionModel

    >>> # Initializing a AltCLIPVisionConfig with BAAI/AltCLIP style configuration
    >>> configuration = AltCLIPVisionConfig()

    >>> # Initializing a AltCLIPVisionModel (with random weights) from the BAAI/AltCLIP style configuration
    >>> model = AltCLIPVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```Zaltclip_vision_modelvision_configr            r          
quick_gelur           r         ?c                    sd   t  jdi | || _|| _|| _|| _|| _|| _|| _|| _	|| _
|| _|| _|
| _|	| _d S )Nr   )r   r   r   r   projection_dimr   r   num_channels
patch_size
image_sizer$   r%   attention_dropoutr&   r   )r*   r   r   r?   r   r   r@   rB   rA   r   r&   rC   r$   r%   r+   r,   r   r.   r      s   
zAltCLIPVisionConfig.__init__)r   r7   r8   r9   r9   r   r:   r;   r<   r   r=   r   r>   )r/   r0   r1   r2   r3   Zbase_config_keyr   r4   r   r   r,   r.   r5      s$    7r5   c                       sH   e Zd ZdZdZeedZ	d fdd	Ze	d	ed
efddZ
  ZS )AltCLIPConfiga  
    This is the configuration class to store the configuration of a [`AltCLIPModel`]. It is used to instantiate an
    AltCLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the AltCLIP
    [BAAI/AltCLIP](https://huggingface.co/BAAI/AltCLIP) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`AltCLIPTextConfig`].
        vision_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize [`AltCLIPVisionConfig`].
        projection_dim (`int`, *optional*, defaults to 768):
            Dimensionality of text and vision projection layers.
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The initial value of the *logit_scale* parameter. Default is used as per the original CLIP implementation.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Example:

    ```python
    >>> from transformers import AltCLIPConfig, AltCLIPModel

    >>> # Initializing a AltCLIPConfig with BAAI/AltCLIP style configuration
    >>> configuration = AltCLIPConfig()

    >>> # Initializing a AltCLIPModel (with random weights) from the BAAI/AltCLIP style configuration
    >>> model = AltCLIPModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config

    >>> # We can also initialize a AltCLIPConfig from a AltCLIPTextConfig and a AltCLIPVisionConfig

    >>> # Initializing a AltCLIPText and AltCLIPVision configuration
    >>> config_text = AltCLIPTextConfig()
    >>> config_vision = AltCLIPVisionConfig()

    >>> config = AltCLIPConfig.from_text_vision_configs(config_text, config_vision)
    ```Zaltcliptext_configr6   Nr   /L
F@c                    s  | dd }| dd }t jdi | |d ur]|d u ri }tdi | }| D ]+\}	}
|	|v rW|
||	 krW|	dvrW|	|v rLd|	 d|	 d}nd|	 d}t| q,|| |d ur|d u rgi }t	di | }d	|v rd
d |d	  D |d	< | D ]+\}	}
|	|v r|
||	 kr|	dvr|	|v rd|	 d|	 d}nd|	 d}t| q|| |d u ri }td |d u ri }td tdi || _
t	di || _|| _|| _d| _d S )Ntext_config_dictvision_config_dict)Ztransformers_version`zp` is found in both `text_config_dict` and `text_config` but with different values. The value `text_config_dict["z"]` will be used instead.zm`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The value `text_config["z"]` will be overridden.Zid2labelc                 S   s   i | ]	\}}t ||qS r   )str).0keyvaluer   r   r.   
<dictcomp>L  s    z*AltCLIPConfig.__init__.<locals>.<dictcomp>zv` is found in both `vision_config_dict` and `vision_config` but with different values. The value `vision_config_dict["zs`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. The value `vision_config["zR`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.zV`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.r>   r   )popr   r   r   to_dictitemsloggerinfoupdater5   rF   r6   r?   logit_scale_init_valuer%   )r*   rF   r6   r?   rV   r+   rH   rI   Z_text_config_dictrM   rN   messageZ_vision_config_dictr,   r   r.   r     sl   








zAltCLIPConfig.__init__rF   r6   c                 K   s   | d|  |  d|S )z
        Instantiate a [`AltCLIPConfig`] (or a derived class) from altclip text model configuration and altclip vision
        model configuration.

        Returns:
            [`AltCLIPConfig`]: An instance of a configuration object
        rE   Nr   )rQ   )clsrF   r6   r+   r   r   r.   from_text_vision_configss  s   
z&AltCLIPConfig.from_text_vision_configs)NNr   rG   )r/   r0   r1   r2   r3   r   r5   Zsub_configsr   classmethodrY   r4   r   r   r,   r.   rD      s    ,
XrD   )r   r5   rD   N)r2   Zconfiguration_utilsr   utilsr   Z
get_loggerr/   rS   r   r5   rD   __all__r   r   r   r.   <module>   s   
v] 