o
    Zh"                     @   sz   d dl Z d dl mZ d dlmZ d dlmZ d dlmZ d dlm	Z	m
Z
 d dlmZ d dlmZ d	gZG d
d	 d	eZdS )    N)Tensor)constraints)Distribution)Independent)ComposeTransform	Transform)_sum_rightmost)_sizeTransformedDistributionc                       s   e Zd ZU dZi Zeeejf e	d< d fdd	Z
d fdd	Zejdd	d
d ZedefddZe fddZe fdedefddZdd Zdd Zdd Zdd Z  ZS )r
   a  
    Extension of the Distribution class, which applies a sequence of Transforms
    to a base distribution.  Let f be the composition of transforms applied::

        X ~ BaseDistribution
        Y = f(X) ~ TransformedDistribution(BaseDistribution, f)
        log p(Y) = log p(X) + log |det (dX/dY)|

    Note that the ``.event_shape`` of a :class:`TransformedDistribution` is the
    maximum shape of its base distribution and its transforms, since transforms
    can introduce correlations among events.

    An example for the usage of :class:`TransformedDistribution` would be::

        # Building a Logistic Distribution
        # X ~ Uniform(0, 1)
        # f = a + b * logit(X)
        # Y ~ f(X) ~ Logistic(a, b)
        base_distribution = Uniform(0, 1)
        transforms = [SigmoidTransform().inv, AffineTransform(loc=a, scale=b)]
        logistic = TransformedDistribution(base_distribution, transforms)

    For more examples, please look at the implementations of
    :class:`~torch.distributions.gumbel.Gumbel`,
    :class:`~torch.distributions.half_cauchy.HalfCauchy`,
    :class:`~torch.distributions.half_normal.HalfNormal`,
    :class:`~torch.distributions.log_normal.LogNormal`,
    :class:`~torch.distributions.pareto.Pareto`,
    :class:`~torch.distributions.weibull.Weibull`,
    :class:`~torch.distributions.relaxed_bernoulli.RelaxedBernoulli` and
    :class:`~torch.distributions.relaxed_categorical.RelaxedOneHotCategorical`
    arg_constraintsNc                    sb  t |tr
|g| _nt |tr tdd |D std|| _ntd| |j|j }t|j}t	| j}t||j
jk rLtd|j
j d| d||}||}||kri|d t||  }	||	}|j
j| }
|
dkrxt||
}|| _|jj|j
j }t|jj|| }t||ksJ t|| }|d | }||d  }t j|||d	 d S )
Nc                 s   s    | ]}t |tV  qd S N)
isinstancer   ).0t r   [/var/www/auris/lib/python3.10/site-packages/torch/distributions/transformed_distribution.py	<genexpr>:   s    z3TransformedDistribution.__init__.<locals>.<genexpr>z6transforms must be a Transform or a list of Transformsz0transforms must be a Transform or list, but was z9base_distribution needs to have shape with size at least z
, but got .r   validate_args)r   r   
transformslistall
ValueErrorbatch_shapeevent_shapelenr   domain	event_dimforward_shapeinverse_shapeexpandr   	base_distcodomainmaxsuper__init__)selfZbase_distributionr   r   Z
base_shapeZbase_event_dim	transformr   Zexpanded_base_shapebase_batch_shapeZreinterpreted_batch_ndimsZtransform_change_in_event_dimr   cutr   r   	__class__r   r   r&   4   sV   






z TransformedDistribution.__init__c                    s   |  t|}t|}|| j }t| jD ]}||}q|d t|t| j	j  }| j	
||_	| j|_tt|j|| jdd | j|_|S )NFr   )Z_get_checked_instancer
   torchSizer   reversedr   r    r   r"   r!   r%   r&   _validate_args)r'   r   Z	_instancenewshaper   r)   r+   r   r   r!   h   s   


zTransformedDistribution.expandF)Zis_discretec                 C   sF   | j s| jjS | j d j}t| j|jkr!t|t| j|j }|S )N)	r   r"   supportr#   r   r   r   r   Zindependent)r'   r4   r   r   r   r4   w   s   zTransformedDistribution.supportreturnc                 C   s   | j jS r   )r"   has_rsample)r'   r   r   r   r6      s   z#TransformedDistribution.has_rsamplec                 C   sP   t   | j|}| jD ]}||}q|W  d   S 1 s!w   Y  dS )a  
        Generates a sample_shape shaped sample or sample_shape shaped batch of
        samples if the distribution parameters are batched. Samples first from
        base distribution and applies `transform()` for every transform in the
        list.
        N)r-   Zno_gradr"   sampler   r'   sample_shapexr(   r   r   r   r7      s   


$zTransformedDistribution.sampler9   c                 C   s$   | j |}| jD ]}||}q	|S )a$  
        Generates a sample_shape shaped reparameterized sample or sample_shape
        shaped batch of reparameterized samples if the distribution parameters
        are batched. Samples first from base distribution and applies
        `transform()` for every transform in the list.
        )r"   rsampler   r8   r   r   r   r;      s   

zTransformedDistribution.rsamplec                 C   s   | j r| | t| j}d}|}t| jD ]"}||}||jj|j	j 7 }|t
|||||jj  }|}q|t
| j||t| jj  }|S )z
        Scores the sample by inverting the transform(s) and computing the score
        using the score of the base distribution and the log abs det jacobian.
        g        )r0   _validate_sampler   r   r/   r   invr   r   r#   r   Zlog_abs_det_jacobianr"   log_prob)r'   valuer   r>   yr(   r:   r   r   r   r>      s"   




z TransformedDistribution.log_probc                 C   s@   d}| j D ]}||j }qt|tr|dkr|S ||d  d S )zu
        This conditionally flips ``value -> 1-value`` to ensure :meth:`cdf` is
        monotone increasing.
           g      ?)r   signr   int)r'   r?   rB   r(   r   r   r   _monotonize_cdf   s   
z'TransformedDistribution._monotonize_cdfc                 C   sL   | j ddd D ]}||}q| jr| j| | j|}| |}|S )z
        Computes the cumulative distribution function by inverting the
        transform(s) and computing the score of the base distribution.
        Nr3   )r   r=   r0   r"   r<   cdfrD   r'   r?   r(   r   r   r   rE      s   
zTransformedDistribution.cdfc                 C   s.   |  |}| j|}| jD ]}||}q|S )z
        Computes the inverse cumulative distribution function using
        transform(s) and computing the score of the base distribution.
        )rD   r"   icdfr   rF   r   r   r   rG      s
   


zTransformedDistribution.icdfr   )__name__
__module____qualname____doc__r   dictstrr   
Constraint__annotations__r&   r!   Zdependent_propertyr4   propertyboolr6   r-   r.   r7   r	   r   r;   r>   rD   rE   rG   __classcell__r   r   r+   r   r
      s   
 !4


)r-   r   Ztorch.distributionsr   Z torch.distributions.distributionr   Ztorch.distributions.independentr   Ztorch.distributions.transformsr   r   Ztorch.distributions.utilsr   Ztorch.typesr	   __all__r
   r   r   r   r   <module>   s   