o
    Zh~                     @   sv  d dl Z d dlZd dlmZmZmZ d dlZd dlmZ d dl	m
Z
 ddlmZmZ ddlmZ ddlmZmZmZ dd	lmZ dd
lmZ ddlmZ ddlmZmZmZ ddlmZm Z  ddl!m"Z" deeej#j$f de%e&ef ddfddZ'dej#j$ddfddZ(deddfddZ)dej#j$ddfddZ*		dAdede+deee%e&ef df deee%e&ef df def
ddZ,				dBdej#j$d ee"e%e&ef f de+d!e-ed"f d#eee%e&ef df d$eee"e%e&ef f  deee%e&ef df d%e+defd&d'Z.		dAdej#j$d ee"e%e&ef f de+d!e-ed"f d#eee%e&ef df deee%e&ef df defd(d)Z/		dAdej#j$deee%e&ef df deee%e&ef df defd*d+Z0			dCdej#j$d ee"e%e&ef f d!e-ed"f d#eee%e&ef df d$eee"e%e&ef f  deee%e&ef df defd,d-Z1		dAdej#j$d ee"e%e&ef f d!e-ed"f d#eee%e&ef df deee%e&ef df defd.d/Z2			0				dDd1ed2e+d3eee%e&ef df d%e+d4e+d ee"e%e&ef df deee%e&ef df d5e+d6e+defd7d8Z3		0			dEd1ed3eee%e&ef df d4e+d ee"e%e&ef df deee%e&ef df d6e+defd9d:Z4		0		dFd1ed3eee%e&ef df d4e+d ee"e%e&ef df deee%e&ef df defd;d<Z5			dCd1ed3eee%e&ef df d ee"e%e&ef df deee%e&ef df def
d=d>Z6		dGd1ed2e+d3eee%e&ef df defd?d@Z7dS )H    N)AnyOptionalUnion)GraphModule)_USER_PRESERVED_ATTRIBUTES_KEY   )BackendConfigget_tensorrt_backend_config)convert)ConvertCustomConfigFuseCustomConfigPrepareCustomConfig)fuse)ObservedGraphModule)prepare)QuantizationTracerScopeScopeContextManager)get_custom_module_class_keys#get_skipped_module_name_and_classes)QConfigMappingmodelpreserved_attrsreturnc                 C   s8   t  || jt< | jt  D ]
\}}t| || qdS )zXStore preserved attributes to the model.meta so that it can be preserved during deepcopyN)copymetar   itemssetattr)r   r   Z	attr_nameattr r   P/var/www/auris/lib/python3.10/site-packages/torch/ao/quantization/quantize_fx.pyattach_preserved_attrs_to_model   s   r!   c                 C   s*   t | tstdtt|  d d d S )Nz,input model must be a GraphModule, Got type:z Please make zsure to follow the tutorials.)
isinstancer   
ValueErrorstrtyper   r   r   r    _check_is_graph_module#   s   

r'   c                 C   s"   | j jD ]
}t|dsi |_qdS )a  Attach meta field to all nodes of the graph if it does not exist,
    meta field is a field stores some meta information about the node, such
    as dtype and shape information for output of the node, this only exists
    if the program is captured by make_fx (used in quantize_pt2e flow), if
    the program is captured by torch.fx symbolic tracing, this field may not exist,
    so we add it here to avoid checking this all over the places
    r   N)graphnodeshasattrr   )r   noder   r   r    !_attach_meta_to_node_if_not_exist.   s
   
r,   c                 C   sf   g }|   D ]\}}t|tjjjjr|| qt| q|D ]}| j	|= tjjj
 | j	|< q dS )z+Swap FloatFunctional with FXFloatFunctionalN)Znamed_childrenr"   torchZaonn	quantizedZFloatFunctionalappend_swap_ff_with_fxffZ_modulesZFXFloatFunctional)r   Zmodules_to_swapnamemoduler   r   r    r1   ;   s   
r1   is_qatfuse_custom_configbackend_configc                 C   s   t |  t| |||S )zInternal helper function to fuse modules in preparation for quantization

    Args:
        model: GraphModule object from symbolic tracing (torch.fx.symbolic_trace)
    )r'   r   )r   r4   r5   r6   r   r   r    _fuse_fxI   s   r7   Fqconfig_mappingexample_inputs.prepare_custom_config_equalization_configis_standalone_modulec                    s   |du rt  }|du rt }t|tr tjdtdd t |}t  t	||\}}	|j
}
 fdd|
D }t||	}t | }t| t |j
}t||||}t||||j|||||d	}t|| |S )aZ  Internal helper function for prepare_fx
        Args:
          `model`, `qconfig_mapping`, `prepare_custom_config`, `_equalization_config`:
          see docs for :func:`~torch.ao.quantization.prepare_fx`
          `is_standalone_module`: a boolean flag indicates whether we are
          quantizing a standalone module or not, a standalone module
          is a submodule of the parent module that is not inlined in the
    forward graph of the parent module,
          the way we quantize standalone module is described in:
          :func:`~torch.ao.quantization._prepare_standalone_module_fx`
    NzPassing a prepare_custom_config_dict to prepare is deprecated and will not be supported in a future version. Please pass in a PrepareCustomConfig instead.   
stacklevelc                    "   i | ]}t  |r|t |qS r   r*   getattr.0r   r&   r   r    
<dictcomp>       
z_prepare_fx.<locals>.<dictcomp>)r9   r:   r;   r6   r<   )r   r   r"   dictwarningswarnFutureWarning	from_dictr1   r   preserved_attributesr   r   tracer,   r   Zset_preserved_attributesr7   r   Znode_name_to_scoper!   )r   r8   r4   r9   r:   r;   r6   r<   Zskipped_module_namesZskipped_module_classespreserved_attr_namesr   Ztracergraph_moduler5   preparedr   r&   r    _prepare_fxZ   sN   




rQ   c              	   C   s   t | |||||ddS )a  [Internal use only] Prepare a standalone module, so that it can be used when quantizing the
    parent module.
    standalone_module means it a submodule that is not inlined in parent module,
    and will be quantized separately as one unit.

    How the standalone module is observed is specified by `input_quantized_idxs` and
    `output_quantized_idxs` in the prepare_custom_config for the standalone module

    Returns:

        * model(GraphModule): prepared standalone module. It has these attributes in
          model.meta:

            * `standalone_module_input_quantized_idxs(List[Int])`: a list of
              indexes for the graph input that is expected to be quantized,
              same as input_quantized_idxs configuration provided
              for the standalone module
            * `standalone_module_output_quantized_idxs(List[Int])`: a list of
              indexs for the graph output that is quantized
              same as input_quantized_idxs configuration provided
              for the standalone module

    T)r6   r<   )rQ   )r   r8   r4   r9   r:   r6   r   r   r    _prepare_standalone_module_fx   s   rR   c                    s   |du rt  }t|trtjdtdd t |}tj	d |j
} fdd|D }tj }t| t|d||}t|| |S )	a  Fuse modules like conv+bn, conv+bn+relu etc, model must be in eval mode.
    Fusion rules are defined in torch.ao.quantization.fx.fusion_pattern.py

    Args:

        * `model` (torch.nn.Module): a torch.nn.Module model
        * `fuse_custom_config` (FuseCustomConfig): custom configurations for fuse_fx.
            See :class:`~torch.ao.quantization.fx.custom_config.FuseCustomConfig` for more details
    Example::

        from torch.ao.quantization import fuse_fx
        m = Model().eval()
        m = fuse_fx(m)

    NzPassing a fuse_custom_config_dict to fuse is deprecated and will not be supported in a future version. Please pass in a FuseCustomConfig instead.   r>   z$quantization_api.quantize_fx.fuse_fxc                    r@   r   rA   rC   r&   r   r    rE      rF   zfuse_fx.<locals>.<dictcomp>F)r   r"   rG   rH   rI   rJ   rK   r-   _C_log_api_usage_oncerL   ZfxZsymbolic_tracer,   r7   r!   )r   r5   r6   rN   r   rO   r   r&   r    fuse_fx   s&   



rV   c                 C   s    t jd t| |d||||S )a   Prepare a model for post training quantization

    Args:
      * `model` (torch.nn.Module): torch.nn.Module model

      * `qconfig_mapping` (QConfigMapping): QConfigMapping object to configure how a model is
         quantized, see :class:`~torch.ao.quantization.qconfig_mapping.QConfigMapping`
         for more details

      * `example_inputs` (Tuple[Any, ...]): Example inputs for forward function of the model,
         Tuple of positional args (keyword args can be passed as positional args as well)

      * `prepare_custom_config` (PrepareCustomConfig): customization configuration for quantization tool.
          See :class:`~torch.ao.quantization.fx.custom_config.PrepareCustomConfig` for more details

      * `_equalization_config`: config for specifying how to perform equalization on the model

      * `backend_config` (BackendConfig): config that specifies how operators are quantized
         in a backend, this includes how the operators are observed,
         supported fusion patterns, how quantize/dequantize ops are
         inserted, supported dtypes etc. See :class:`~torch.ao.quantization.backend_config.BackendConfig` for more details

    Return:
      A GraphModule with observer (configured by qconfig_mapping), ready for calibration

    Example::

        import torch
        from torch.ao.quantization import get_default_qconfig_mapping
        from torch.ao.quantization.quantize_fx import prepare_fx

        class Submodule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)
            def forward(self, x):
                x = self.linear(x)
                return x

        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)
                self.sub = Submodule()

            def forward(self, x):
                x = self.linear(x)
                x = self.sub(x) + x
                return x

        # initialize a floating point model
        float_model = M().eval()

        # define calibration function
        def calibrate(model, data_loader):
            model.eval()
            with torch.no_grad():
                for image, target in data_loader:
                    model(image)

        # qconfig is the configuration for how we insert observers for a particular
        # operator
        # qconfig = get_default_qconfig("fbgemm")
        # Example of customizing qconfig:
        # qconfig = torch.ao.quantization.QConfig(
        #    activation=MinMaxObserver.with_args(dtype=torch.qint8),
        #    weight=MinMaxObserver.with_args(dtype=torch.qint8))
        # `activation` and `weight` are constructors of observer module

        # qconfig_mapping is a collection of quantization configurations, user can
        # set the qconfig for each operator (torch op calls, functional calls, module calls)
        # in the model through qconfig_mapping
        # the following call will get the qconfig_mapping that works best for models
        # that target "fbgemm" backend
        qconfig_mapping = get_default_qconfig_mapping("fbgemm")

        # We can customize qconfig_mapping in different ways.
        # e.g. set the global qconfig, which means we will use the same qconfig for
        # all operators in the model, this can be overwritten by other settings
        # qconfig_mapping = QConfigMapping().set_global(qconfig)
        # e.g. quantize the linear submodule with a specific qconfig
        # qconfig_mapping = QConfigMapping().set_module_name("linear", qconfig)
        # e.g. quantize all nn.Linear modules with a specific qconfig
        # qconfig_mapping = QConfigMapping().set_object_type(torch.nn.Linear, qconfig)
        # for a more complete list, please see the docstring for :class:`torch.ao.quantization.QConfigMapping`
        # argument

        # example_inputs is a tuple of inputs, that is used to infer the type of the
        # outputs in the model
        # currently it's not used, but please make sure model(*example_inputs) runs
        example_inputs = (torch.randn(1, 3, 224, 224),)

        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        # `prepare_fx` inserts observers in the model based on qconfig_mapping and
        # backend_config. If the configuration for an operator in qconfig_mapping
        # is supported in the backend_config (meaning it's supported by the target
        # hardware), we'll insert observer modules according to the qconfig_mapping
        # otherwise the configuration in qconfig_mapping will be ignored
        #
        # Example:
        # in qconfig_mapping, user sets linear module to be quantized with quint8 for
        # activation and qint8 for weight:
        # qconfig = torch.ao.quantization.QConfig(
        #     observer=MinMaxObserver.with_args(dtype=torch.quint8),
        #     weight=MinMaxObserver.with-args(dtype=torch.qint8))
        # Note: current qconfig api does not support setting output observer, but
        # we may extend this to support these more fine grained control in the
        # future
        #
        # qconfig_mapping = QConfigMapping().set_object_type(torch.nn.Linear, qconfig)
        # in backend config, linear module also supports in this configuration:
        # weighted_int8_dtype_config = DTypeConfig(
        #   input_dtype=torch.quint8,
        #   output_dtype=torch.quint8,
        #   weight_dtype=torch.qint8,
        #   bias_type=torch.float)

        # linear_pattern_config = BackendPatternConfig(torch.nn.Linear) \
        #    .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
        #    .add_dtype_config(weighted_int8_dtype_config) \
        #    ...

        # backend_config = BackendConfig().set_backend_pattern_config(linear_pattern_config)
        # `prepare_fx` will check that the setting requested by suer in qconfig_mapping
        # is supported by the backend_config and insert observers and fake quant modules
        # in the model
        prepared_model = prepare_fx(float_model, qconfig_mapping, example_inputs)
        # Run calibration
        calibrate(prepared_model, sample_inference_data)
    z'quantization_api.quantize_fx.prepare_fxFr-   rT   rU   rQ   )r   r8   r9   r:   r;   r6   r   r   r    
prepare_fx   s    rX   c                 C   s    t jd t| |d|||dS )a  Prepare a model for quantization aware training

    Args:
      * `model` (torch.nn.Module): torch.nn.Module model
      * `qconfig_mapping` (QConfigMapping): see :func:`~torch.ao.quantization.prepare_fx`
      * `example_inputs` (Tuple[Any, ...]): see :func:`~torch.ao.quantization.prepare_fx`
      * `prepare_custom_config` (PrepareCustomConfig): see :func:`~torch.ao.quantization.prepare_fx`
      * `backend_config` (BackendConfig): see :func:`~torch.ao.quantization.prepare_fx`

    Return:
      A GraphModule with fake quant modules (configured by qconfig_mapping and backend_config), ready for
      quantization aware training

    Example::

        import torch
        from torch.ao.quantization import get_default_qat_qconfig_mapping
        from torch.ao.quantization.quantize_fx import prepare_qat_fx

        class Submodule(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)
            def forward(self, x):
                x = self.linear(x)
                return x

        class M(torch.nn.Module):
            def __init__(self) -> None:
                super().__init__()
                self.linear = torch.nn.Linear(5, 5)
                self.sub = Submodule()

            def forward(self, x):
                x = self.linear(x)
                x = self.sub(x) + x
                return x

        # initialize a floating point model
        float_model = M().train()
        # (optional, but preferred) load the weights from pretrained model
        # float_model.load_weights(...)

        # define the training loop for quantization aware training
        def train_loop(model, train_data):
            model.train()
            for image, target in data_loader:
                ...

        # qconfig is the configuration for how we insert observers for a particular
        # operator
        # qconfig = get_default_qconfig("fbgemm")
        # Example of customizing qconfig:
        # qconfig = torch.ao.quantization.QConfig(
        #    activation=FakeQuantize.with_args(observer=MinMaxObserver.with_args(dtype=torch.qint8)),
        #    weight=FakeQuantize.with_args(observer=MinMaxObserver.with_args(dtype=torch.qint8)))
        # `activation` and `weight` are constructors of observer module

        # qconfig_mapping is a collection of quantization configurations, user can
        # set the qconfig for each operator (torch op calls, functional calls, module calls)
        # in the model through qconfig_mapping
        # the following call will get the qconfig_mapping that works best for models
        # that target "fbgemm" backend
        qconfig_mapping = get_default_qat_qconfig("fbgemm")

        # We can customize qconfig_mapping in different ways, please take a look at
        # the docstring for :func:`~torch.ao.quantization.prepare_fx` for different ways
        # to configure this

        # example_inputs is a tuple of inputs, that is used to infer the type of the
        # outputs in the model
        # currently it's not used, but please make sure model(*example_inputs) runs
        example_inputs = (torch.randn(1, 3, 224, 224),)

        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        # `prepare_qat_fx` inserts observers in the model based on qconfig_mapping and
        # backend_config, if the configuration for an operator in qconfig_mapping
        # is supported in the backend_config (meaning it's supported by the target
        # hardware), we'll insert fake_quantize modules according to the qconfig_mapping
        # otherwise the configuration in qconfig_mapping will be ignored
        # see :func:`~torch.ao.quantization.prepare_fx` for a detailed explanation of
        # how qconfig_mapping interacts with backend_config
        prepared_model = prepare_qat_fx(float_model, qconfig_mapping, example_inputs)
        # Run training
        train_loop(prepared_model, train_loop)

    z+quantization_api.quantize_fx.prepare_qat_fxT)r6   rW   )r   r8   r9   r:   r6   r   r   r    prepare_qat_fx  s   _rY   TrO   is_referenceconvert_custom_config_remove_qconfigis_decomposedkeep_original_weightsc	                    sz   |du rt  }t|trtjdtdd t |}t  |j}	 fdd|	D }
t	 ||||||||d	}t
||
 |S )z_`is_standalone_module`: see docs in :func:`~torch.ao.quantization.prepare_standalone_module_fx`NzPassing a convert_custom_config_dict to convert is deprecated and will not be supported in a future version. Please pass in a ConvertCustomConfig instead.r=   r>   c                    r@   r   rA   rC   rO   r   r    rE     rF   z_convert_fx.<locals>.<dictcomp>)Z_remove_qconfig_flagr8   r6   r]   r^   )r   r"   rG   rH   rI   rJ   rK   r'   rL   r
   r!   )rO   rZ   r[   r<   r\   r8   r6   r]   r^   rN   r   r/   r   r_   r    _convert_fx  s6   



r`   c              	   C   s"   t jd t| d|||||dS )a
  Convert a calibrated or trained model to a quantized model

    Args:
        * `graph_module` (torch.fx.GraphModule): A prepared and calibrated/trained model (GraphModule)

        * `convert_custom_config` (ConvertCustomConfig): custom configurations for convert function.
            See :class:`~torch.ao.quantization.fx.custom_config.ConvertCustomConfig` for more details

        * `_remove_qconfig` (bool): Option to remove the qconfig attributes in the model after convert.

        * `qconfig_mapping` (QConfigMapping): config for specifying how to convert a model for quantization.

           The keys must include the ones in the qconfig_mapping passed to `prepare_fx` or `prepare_qat_fx`,
           with the same values or `None`. Additional keys can be specified with values set to `None`.

          For each entry whose value is set to None, we skip quantizing that entry in the model::

            qconfig_mapping = QConfigMapping
                .set_global(qconfig_from_prepare)
                .set_object_type(torch.nn.functional.add, None)  # skip quantizing torch.nn.functional.add
                .set_object_type(torch.nn.functional.linear, qconfig_from_prepare)
                .set_module_name("foo.bar", None)  # skip quantizing module "foo.bar"

         * `backend_config` (BackendConfig): A configuration for the backend which describes how
            operators should be quantized in the backend, this includes quantization
            mode support (static/dynamic/weight_only), dtype support (quint8/qint8 etc.),
            observer placement for each operators and fused operators.
            See :class:`~torch.ao.quantization.backend_config.BackendConfig` for more details

    Return:
        A quantized model (torch.nn.Module)

    Example::

        # prepared_model: the model after prepare_fx/prepare_qat_fx and calibration/training
        # convert_fx converts a calibrated/trained model to a quantized model for the
        # target hardware, this includes converting the model first to a reference
        # quantized model, and then lower the reference quantized model to a backend
        # Currently, the supported backends are fbgemm (onednn), qnnpack (xnnpack) and
        # they share the same set of quantized operators, so we are using the same
        # lowering procedure
        #
        # backend_config defines the corresponding reference quantized module for
        # the weighted modules in the model, e.g. nn.Linear
        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        quantized_model = convert_fx(prepared_model)

    z'quantization_api.quantize_fx.convert_fxF)rZ   r[   r\   r8   r6   r^   r-   rT   rU   r`   )rO   r[   r\   r8   r6   r^   r   r   r    
convert_fx-  s   9rb   c                 C   s    t jd t| d||||dS )a}  Convert a calibrated or trained model to a reference quantized model,
    see https://github.com/pytorch/rfcs/blob/master/RFC-0019-Extending-PyTorch-Quantization-to-Custom-Backends.md for more details,
    reference quantized model is a standard representation of a quantized model provided
    by FX Graph Mode Quantization, it can be further lowered to run on the target
    hardware, like accelerators

    Args:
        * `graph_module` (GraphModule): A prepared and calibrated/trained model (GraphModule)

        * `convert_custom_config` (ConvertCustomConfig): custom configurations for convert function.
            See :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

        * `_remove_qconfig` (bool): Option to remove the qconfig attributes in the model after convert.

        * `qconfig_mapping` (QConfigMapping): config for specifying how to convert a model for quantization.
            See :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

         * `backend_config` (BackendConfig): A configuration for the backend which describes how
            operators should be quantized in the backend. See
            :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

    Return:
        A reference quantized model (GraphModule)

    Example::

        # prepared_model: the model after prepare_fx/prepare_qat_fx and calibration/training
        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        reference_quantized_model = convert_to_reference_fx(prepared_model)

    z4quantization_api.quantize_fx.convert_to_reference_fxT)rZ   r[   r\   r8   r6   ra   )rO   r[   r\   r8   r6   r   r   r    convert_to_reference_fxr  s   'rc   c              	   C   s"   t jd t| d|d||ddS )a  Convert a calibrated or trained model to a reference quantized model, with
    decomposed representation for quantized Tensor
    see https://github.com/pytorch/rfcs/blob/master/RFC-0019-Extending-PyTorch-Quantization-to-Custom-Backends.md for more details,
    reference quantized model is a standard representation of a quantized model provided
    by FX Graph Mode Quantization, it can be further lowered to run on the target
    hardware, like accelerators

    Note: this is not public API

    Args:
        * `graph_module` (GraphModule): A prepared and calibrated/trained model (GraphModule)

        * `convert_custom_config` (ConvertCustomConfig): custom configurations for convert function.
            See :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

        * `_remove_qconfig` (bool): Option to remove the qconfig attributes in the model after convert.

        * `qconfig_mapping` (QConfigMapping): config for specifying how to convert a model for quantization.
            See :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

         * `backend_config` (BackendConfig): A configuration for the backend which describes how
            operators should be quantized in the backend. See
            :func:`~torch.ao.quantization.quantize_fx.convert_fx` for more details.

    Return:
        A reference quantized model (GraphModule) with operators working with decomposed quantized Tensor

    Example::

        # prepared_model: the model after prepare_fx/prepare_qat_fx and calibration/training
        # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack
        # e.g. backend_config = get_default_backend_config("fbgemm")
        reference_quantized_model = _convert_to_reference_decomposed_fx(prepared_model)

    z@quantization_api.quantize_fx._convert_to_reference_decomposed_fxTF)rZ   r[   r\   r8   r6   r]   ra   )rO   r[   r8   r6   r   r   r    #_convert_to_reference_decomposed_fx  s   )rd   c                 C   s   t | ||ddS )av  [Internal use only] Convert a model produced by :func:`~torch.ao.quantization.prepare_standalone_module_fx`
    and convert it to a quantized model

    Returns a quantized standalone module, whether input/output is quantized is
    specified by prepare_custom_config, with
    input_quantized_idxs, output_quantized_idxs, please
    see docs for prepare_fx for details
    T)r<   )r`   )rO   rZ   r[   r   r   r    _convert_standalone_module_fx  s   re   )NN)NNNF)NNN)NFTNNFF)NTNNF)NTNN)FN)8r   rH   typingr   r   r   r-   Ztorch.fxr   Ztorch.fx.graph_moduler   r6   r   r	   Z
fx.convertr
   Zfx.custom_configr   r   r   Zfx.fuser   Zfx.graph_moduler   Z
fx.preparer   Z	fx.tracerr   r   r   Zfx.utilsr   r   r8   r   r.   ModulerG   r$   r!   r'   r,   r1   boolr7   tuplerQ   rR   rV   rX   rY   r`   rb   rc   rd   re   r   r   r   r    <module>   s   



	
M

,
4

 

m	

2
G
4
9