o
    GZh`6                     @   s   d dl mZ d dlmZmZ d dlmZ d dlmZ d dl	m
Z
 d dlmZ d dlmZ d dlmZ d d	lmZmZ d d
lmZmZmZmZmZmZ d dlmZ dd ZG dd deZdd Z dd Z!G dd deZ"dS )    )Counter)Mulsympify)Add)ExprBuilder)default_sort_key)log)
MatrixExpr)validate_matadd_integer)
ZeroMatrix	OneMatrix)unpackflatten	conditionexhaustrm_idsort)sympy_deprecation_warningc                  G   s,   | st dt| dkr| d S t|   S )au  
    Return the elementwise (aka Hadamard) product of matrices.

    Examples
    ========

    >>> from sympy import hadamard_product, MatrixSymbol
    >>> A = MatrixSymbol('A', 2, 3)
    >>> B = MatrixSymbol('B', 2, 3)
    >>> hadamard_product(A)
    A
    >>> hadamard_product(A, B)
    HadamardProduct(A, B)
    >>> hadamard_product(A, B)[0, 1]
    A[0, 1]*B[0, 1]
    z#Empty Hadamard product is undefined   r   )	TypeErrorlenHadamardProductdoit)Zmatrices r   R/var/www/auris/lib/python3.10/site-packages/sympy/matrices/expressions/hadamard.pyhadamard_product   s
   r   c                       s`   e Zd ZdZdZddd fdd
Zedd	 Zd
d Zdd Z	dd Z
dd Zdd Z  ZS )r   a(  
    Elementwise product of matrix expressions

    Examples
    ========

    Hadamard product for matrix symbols:

    >>> from sympy import hadamard_product, HadamardProduct, MatrixSymbol
    >>> A = MatrixSymbol('A', 5, 5)
    >>> B = MatrixSymbol('B', 5, 5)
    >>> isinstance(hadamard_product(A, B), HadamardProduct)
    True

    Notes
    =====

    This is a symbolic object that simply stores its argument without
    evaluating it. To actually compute the product, use the function
    ``hadamard_product()`` or ``HadamardProduct.doit``
    TFN)evaluatecheckc                   s   t tt|}t|dkrtdtdd |D std|d ur)tdddd	 |d
ur1t|  t	 j
| g|R  }|rC|jd
d}|S )Nr   z+HadamardProduct needs at least one argumentc                 s       | ]}t |tV  qd S N)
isinstancer	   .0argr   r   r   	<genexpr>G       z*HadamardProduct.__new__.<locals>.<genexpr>z Mix of Matrix and Scalar symbolszjPassing check to HadamardProduct is deprecated and the check argument will be removed in a future version.z1.11z,remove-check-argument-from-matrix-operations)Zdeprecated_since_versionZactive_deprecations_targetF)deep)listmapr   r   
ValueErrorallr   r   validatesuper__new__r   )clsr   r   argsobj	__class__r   r   r-   A   s"   zHadamardProduct.__new__c                 C   s   | j d jS Nr   )r/   shapeselfr   r   r   r4   X   s   zHadamardProduct.shapec                    s   t  fdd| jD  S )Nc                    s    g | ]}|j  fi qS r   )_entryr!   ijkwargsr   r   
<listcomp>]   s     z*HadamardProduct._entry.<locals>.<listcomp>)r   r/   )r6   r9   r:   r;   r   r8   r   r7   \   s   zHadamardProduct._entryc                 C   s    ddl m} ttt|| j S Nr   )	transpose)$sympy.matrices.expressions.transposer>   r   r'   r(   r/   r6   r>   r   r   r   _eval_transpose_   s   zHadamardProduct._eval_transposec                    s   | j fdd| jD  }ddlm  ddlm}  fdd|jD rEfdd|jD }|d	d t D j| j }t	|g|  }t
|S )
Nc                 3   s     | ]}|j di  V  qd S )Nr   )r   r"   r9   )hintsr   r   r$   d   s    z'HadamardProduct.doit.<locals>.<genexpr>r   
MatrixBase)ImmutableMatrixc                    s   g | ]	}t | r|qS r   )r    rB   rD   r   r   r<   i   s    z(HadamardProduct.doit.<locals>.<listcomp>c                    s   g | ]}| vr|qS r   r   rB   )explicitr   r   r<   k   s    c                 S   s   g | ]}t |qS r   )r   fromiterrB   r   r   r   r<   l   s    
)funcr/   Zsympy.matrices.matrixbaserE   Zsympy.matrices.immutablerF   zipZreshaper4   r   canonicalize)r6   rC   exprrF   	remainderZexpl_matr   )rE   rG   rC   r   r   c   s   zHadamardProduct.doitc                 C   sd   g }t | j}tt|D ]}|d | || |g ||d d   }|t|  qt|S Nr   )	r'   r/   ranger   diffappendr   r   rH   )r6   xZtermsr/   r9   Zfactorsr   r   r   _eval_derivatives   s   
,
z HadamardProduct._eval_derivativec                    s<  ddl m} ddl m} ddlm} fddt jD }g }|D ]y} jd | } j|d d  }	 j| }
t|	|  }dd	g} fd
dt|D }|
D ]G}|j	|j
 }|j	|j }t|t|t||g|t||ggg|}|jd jd j|_d|_|jd jd j|_d|_|g|_	|| qSq"|S )Nr   ArrayDiagonalArrayTensorProduct_make_matrixc                    s   g | ]\}}|  r|qS r   )has)r"   r9   r#   rR   r   r   r<      s    zAHadamardProduct._eval_derivative_matrix_lines.<locals>.<listcomp>r   )r            c                    s"   g | ]\}} j | d kr|qS r   )r4   r"   r:   er5   r   r   r<      s   " r\   )0sympy.tensor.array.expressions.array_expressionsrU   rW   "sympy.matrices.expressions.matexprrY   	enumerater/   _eval_derivative_matrix_linesr   _lines_first_line_index_second_line_indexr   _first_pointer_parent_first_pointer_index_second_pointer_parent_second_pointer_indexrQ   )r6   rR   rU   rW   rY   Z
with_x_indlinesindZ	left_argsZ
right_argsdZhadamdiagonalr9   l1l2subexprr   )r6   rR   r   rf   {   sH   

	z-HadamardProduct._eval_derivative_matrix_lines)__name__
__module____qualname____doc__Zis_HadamardProductr-   propertyr4   r7   rA   r   rS   rf   __classcell__r   r   r1   r   r   )   s    
r   c                 C   s   t dd t}t|}|| } t dd tdd }|| } dd }t dd |}|| } t| trXt| j}g }| D ]\}}|dkrK|	| q=|	t
|| q=t| } t d	d tt}|| } t| } | S )
a  Canonicalize the Hadamard product ``x`` with mathematical properties.

    Examples
    ========

    >>> from sympy import MatrixSymbol, HadamardProduct
    >>> from sympy import OneMatrix, ZeroMatrix
    >>> from sympy.matrices.expressions.hadamard import canonicalize
    >>> from sympy import init_printing
    >>> init_printing(use_unicode=False)

    >>> A = MatrixSymbol('A', 2, 2)
    >>> B = MatrixSymbol('B', 2, 2)
    >>> C = MatrixSymbol('C', 2, 2)

    Hadamard product associativity:

    >>> X = HadamardProduct(A, HadamardProduct(B, C))
    >>> X
    A.*(B.*C)
    >>> canonicalize(X)
    A.*B.*C

    Hadamard product commutativity:

    >>> X = HadamardProduct(A, B)
    >>> Y = HadamardProduct(B, A)
    >>> X
    A.*B
    >>> Y
    B.*A
    >>> canonicalize(X)
    A.*B
    >>> canonicalize(Y)
    A.*B

    Hadamard product identity:

    >>> X = HadamardProduct(A, OneMatrix(2, 2))
    >>> X
    A.*1
    >>> canonicalize(X)
    A

    Absorbing element of Hadamard product:

    >>> X = HadamardProduct(A, ZeroMatrix(2, 2))
    >>> X
    A.*0
    >>> canonicalize(X)
    0

    Rewriting to Hadamard Power

    >>> X = HadamardProduct(A, A, A)
    >>> X
    A.*A.*A
    >>> canonicalize(X)
     .3
    A

    Notes
    =====

    As the Hadamard product is associative, nested products can be flattened.

    The Hadamard product is commutative so that factors can be sorted for
    canonical form.

    A matrix of only ones is an identity for Hadamard product,
    so every matrices of only ones can be removed.

    Any zero matrix will make the whole product a zero matrix.

    Duplicate elements can be collected and rewritten as HadamardPower

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
    c                 S   
   t | tS r   r    r   r[   r   r   r   <lambda>      
 zcanonicalize.<locals>.<lambda>c                 S   r{   r   r|   r[   r   r   r   r}     r~   c                 S   r{   r   )r    r   r[   r   r   r   r}     r~   c                 S   s"   t dd | jD rt| j S | S )Nc                 s   r   r   )r    r   )r"   cr   r   r   r$   
  r%   z/canonicalize.<locals>.absorb.<locals>.<genexpr>)anyr/   r   r4   r[   r   r   r   absorb	  s   
zcanonicalize.<locals>.absorbc                 S   r{   r   r|   r[   r   r   r   r}     r~   r   c                 S   r{   r   r|   r[   r   r   r   r}   #  r~   )r   r   r   r   r    r   r   r/   itemsrQ   HadamardPowerr   r   r   )rR   ruleZfunr   ZtallyZnew_argbaseexpr   r   r   rK      s@   S


rK   c                 C   sB   t | } t |}|dkr| S | js| | S |jrtdt| |S )Nr   z#cannot raise expression to a matrix)r   	is_Matrixr)   r   )r   r   r   r   r   hadamard_power-  s   
r   c                       sd   e Zd ZdZ fddZedd Zedd Zedd	 Zd
d Z	dd Z
dd Zdd Z  ZS )r   a  
    Elementwise power of matrix expressions

    Parameters
    ==========

    base : scalar or matrix

    exp : scalar or matrix

    Notes
    =====

    There are four definitions for the hadamard power which can be used.
    Let's consider `A, B` as `(m, n)` matrices, and `a, b` as scalars.

    Matrix raised to a scalar exponent:

    .. math::
        A^{\circ b} = \begin{bmatrix}
        A_{0, 0}^b   & A_{0, 1}^b   & \cdots & A_{0, n-1}^b   \\
        A_{1, 0}^b   & A_{1, 1}^b   & \cdots & A_{1, n-1}^b   \\
        \vdots       & \vdots       & \ddots & \vdots         \\
        A_{m-1, 0}^b & A_{m-1, 1}^b & \cdots & A_{m-1, n-1}^b
        \end{bmatrix}

    Scalar raised to a matrix exponent:

    .. math::
        a^{\circ B} = \begin{bmatrix}
        a^{B_{0, 0}}   & a^{B_{0, 1}}   & \cdots & a^{B_{0, n-1}}   \\
        a^{B_{1, 0}}   & a^{B_{1, 1}}   & \cdots & a^{B_{1, n-1}}   \\
        \vdots         & \vdots         & \ddots & \vdots           \\
        a^{B_{m-1, 0}} & a^{B_{m-1, 1}} & \cdots & a^{B_{m-1, n-1}}
        \end{bmatrix}

    Matrix raised to a matrix exponent:

    .. math::
        A^{\circ B} = \begin{bmatrix}
        A_{0, 0}^{B_{0, 0}}     & A_{0, 1}^{B_{0, 1}}     &
        \cdots & A_{0, n-1}^{B_{0, n-1}}     \\
        A_{1, 0}^{B_{1, 0}}     & A_{1, 1}^{B_{1, 1}}     &
        \cdots & A_{1, n-1}^{B_{1, n-1}}     \\
        \vdots                  & \vdots                  &
        \ddots & \vdots                      \\
        A_{m-1, 0}^{B_{m-1, 0}} & A_{m-1, 1}^{B_{m-1, 1}} &
        \cdots & A_{m-1, n-1}^{B_{m-1, n-1}}
        \end{bmatrix}

    Scalar raised to a scalar exponent:

    .. math::
        a^{\circ b} = a^b
    c                    sV   t |}t |}|jr|jr|| S t|tr!t|tr!t|| t | ||}|S r   )r   	is_scalarr    r	   r+   r,   r-   )r.   r   r   r0   r1   r   r   r-   r  s   
zHadamardPower.__new__c                 C   
   | j d S r3   _argsr5   r   r   r   r        
zHadamardPower.basec                 C   r   rN   r   r5   r   r   r   r     r   zHadamardPower.expc                 C   s   | j jr| j jS | jjS r   )r   r   r4   r   r5   r   r   r   r4     s   zHadamardPower.shapec                 K   s   | j }| j}|jr|j||fi |}n|jr|}ntd||jr2|j||fi |}|| S |jr;|}|| S td|)Nz)The base {} must be a scalar or a matrix.z-The exponent {} must be a scalar or a matrix.)r   r   r   r7   r   r)   format)r6   r9   r:   r;   r   r   abr   r   r   r7     s$   zHadamardPower._entryc                 C   s   ddl m} t|| j| jS r=   )r?   r>   r   r   r   r@   r   r   r   rA     s   zHadamardPower._eval_transposec                 C   s:   | j |}| jt}||}t|| | j |  | S r   )r   rP   r   Z	applyfuncr   r   )r6   rR   ZdexpZlogbaseZdlbaser   r   r   rS     s   
zHadamardPower._eval_derivativec                    s  ddl m} ddl m} ddlm}  j|}|D ]d}ddg} fddt|D }|j|j	 }|j|j
 }	t|t|t||g jt j jd	  t||	ggg||jd
}
|
jd jd j|_d|_d|_	|
jd jd j|_d|_d|_
|
g|_q|S )Nr   rV   rT   rX   )r   r\   r]   c                    s$   g | ]\}} j j| d kr|qS r`   )r   r4   ra   r5   r   r   r<     s   $ z?HadamardPower._eval_derivative_matrix_lines.<locals>.<listcomp>r   )	validatorr\   )rc   rW   rU   rd   rY   r   rf   re   rg   rh   ri   r   r   r   	_validater/   rj   rk   rl   rm   )r6   rR   rW   rU   rY   lrr9   rq   rr   rs   rt   r   r5   r   rf     s>   

	

z+HadamardPower._eval_derivative_matrix_lines)ru   rv   rw   rx   r-   ry   r   r   r4   r7   rA   rS   rf   rz   r   r   r1   r   r   9  s    8


	r   N)#collectionsr   Z
sympy.corer   r   Zsympy.core.addr   Zsympy.core.exprr   Zsympy.core.sortingr   Z&sympy.functions.elementary.exponentialr   rd   r	   Z!sympy.matrices.expressions._shaper
   r+   Z"sympy.matrices.expressions.specialr   r   Zsympy.strategiesr   r   r   r   r   r   Zsympy.utilities.exceptionsr   r   r   rK   r   r   r   r   r   r   <module>   s"     ~ 