a
    h5                     @   s   d dl Z d dlmZ d dlmZmZmZ d dlZd dlmZ ddl	m
Z
mZ ejjjZG dd dejjZG d	d
 d
ejjZG dd deZG dd deZG dd dejjZG dd dejjZG dd dejjZdS )    N)Sequence)CallableOptionalUnion)Tensor   )_log_api_usage_once_make_ntuplec                       sr   e Zd ZdZdeed fddZeeee	e
e e
e e
e d fddZeed	d
dZedddZ  ZS )FrozenBatchNorm2da!  
    BatchNorm2d where the batch statistics and the affine parameters are fixed

    Args:
        num_features (int): Number of features ``C`` from an expected input of size ``(N, C, H, W)``
        eps (float): a value added to the denominator for numerical stability. Default: 1e-5
    h㈵>)num_featuresepsc                    sd   t    t|  || _| dt| | dt| | dt| | dt| d S )Nweightbiasrunning_meanrunning_var)super__init__r   r   Zregister_buffertorchZoneszeros)selfr   r   	__class__ B/var/www/auris/lib/python3.9/site-packages/torchvision/ops/misc.pyr      s    
zFrozenBatchNorm2d.__init__)
state_dictprefixlocal_metadatastrictmissing_keysunexpected_keys
error_msgsc           	   	      s2   |d }||v r||= t  ||||||| d S )NZnum_batches_tracked)r   _load_from_state_dict)	r   r   r   r   r   r   r    r!   Znum_batches_tracked_keyr   r   r   r"   $   s    
z'FrozenBatchNorm2d._load_from_state_dictxreturnc                 C   sr   | j dddd}| jdddd}| jdddd}| jdddd}||| j   }|||  }|| | S )N   )r   Zreshaper   r   r   r   Zrsqrt)r   r$   wbrvZrmscaler   r   r   r   forward6   s    zFrozenBatchNorm2d.forward)r%   c                 C   s$   | j j d| jjd  d| j dS )N(r   z, eps=))r   __name__r   shaper   )r   r   r   r   __repr__A   s    zFrozenBatchNorm2d.__repr__)r   )r/   
__module____qualname____doc__intfloatr   dictstrboollistr"   r   r,   r1   __classcell__r   r   r   r   r
      s     r
   c                       s   e Zd Zddddejjejjdddejjf
eee	ee
edf f e	ee
edf f ee	ee
edf ef  eeedejjf  eedejjf  e	ee
edf f ee ee edejjf dd fddZ  ZS )	ConvNormActivation   r&   NT.)in_channelsout_channelskernel_sizestridepaddinggroups
norm_layeractivation_layerdilationinplacer   
conv_layerr%   c              
      s  |d u rxt tr.t  tr.d d   }nJt tr@tnt }t|t | t fddt|D }|d u r|d u }||||| ||dg}|d ur||| |d ur|
d u ri nd|
i}||f i | t j	|  t
|  || _| jtkrtd d S )Nr&   r   c                 3   s&   | ]}| d  d  |  V  qdS )r&   r   Nr   ).0irF   r@   r   r   	<genexpr>]       z.ConvNormActivation.__init__.<locals>.<genexpr>)rF   rC   r   rG   zhDon't use ConvNormActivation directly, please use Conv2dNormActivation and Conv3dNormActivation instead.)
isinstancer5   r   lenr	   tuplerangeappendr   r   r   r?   r   r<   warningswarn)r   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   r   rH   Z	_conv_dimlayersparamsr   rK   r   r   F   s@    

zConvNormActivation.__init__)r/   r2   r3   r   nnBatchNorm2dReLUConv2dr5   r   rP   r   r8   r   Moduler9   r   r;   r   r   r   r   r<   E   s2   r<   c                       s   e Zd ZdZddddejjejjdddf	eee	ee
eef f e	ee
eef f ee	ee
eef ef  eeedejjf  eedejjf  e	ee
eef f ee ee dd fdd	Z  ZS )
Conv2dNormActivationa  
    Configurable block used for Convolution2d-Normalization-Activation blocks.

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
        kernel_size: (int, optional): Size of the convolving kernel. Default: 3
        stride (int, optional): Stride of the convolution. Default: 1
        padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm2d``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.

    r=   r&   NT.r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   r   r%   c                    s*   t  |||||||||	|
|tjj d S N)r   r   r   rW   rZ   r   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   r   r   r   r   r      s    zConv2dNormActivation.__init__)r/   r2   r3   r4   r   rW   rX   rY   r5   r   rP   r   r8   r   r[   r9   r   r;   r   r   r   r   r\   ~   s0   r\   c                       s   e Zd ZdZddddejjejjdddf	eee	ee
eeef f e	ee
eeef f ee	ee
eeef ef  eeedejjf  eedejjf  e	ee
eeef f ee ee dd fdd	Z  ZS )
Conv3dNormActivationa  
    Configurable block used for Convolution3d-Normalization-Activation blocks.

    Args:
        in_channels (int): Number of channels in the input video.
        out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
        kernel_size: (int, optional): Size of the convolving kernel. Default: 3
        stride (int, optional): Stride of the convolution. Default: 1
        padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm3d``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
        dilation (int): Spacing between kernel elements. Default: 1
        inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
        bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
    r=   r&   NT.r]   c                    s*   t  |||||||||	|
|tjj d S r^   )r   r   r   rW   ZConv3dr_   r   r   r   r      s    zConv3dNormActivation.__init__)r/   r2   r3   r4   r   rW   ZBatchNorm3drY   r5   r   rP   r   r8   r   r[   r9   r   r;   r   r   r   r   r`      s0   r`   c                       st   e Zd ZdZejjejjfeee	dejj
f e	dejj
f dd fddZeeddd	Zeedd
dZ  ZS )SqueezeExcitationaE  
    This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507 (see Fig. 1).
    Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in eq. 3.

    Args:
        input_channels (int): Number of channels in the input image
        squeeze_channels (int): Number of squeeze channels
        activation (Callable[..., torch.nn.Module], optional): ``delta`` activation. Default: ``torch.nn.ReLU``
        scale_activation (Callable[..., torch.nn.Module]): ``sigma`` activation. Default: ``torch.nn.Sigmoid``
    .N)input_channelssqueeze_channels
activationscale_activationr%   c                    sX   t    t|  tjd| _tj||d| _tj||d| _	| | _
| | _d S )Nr&   )r   r   r   r   rW   ZAdaptiveAvgPool2davgpoolrZ   fc1fc2rd   re   )r   rb   rc   rd   re   r   r   r   r      s    
zSqueezeExcitation.__init__)inputr%   c                 C   s2   |  |}| |}| |}| |}| |S r^   )rf   rg   rd   rh   re   r   ri   r+   r   r   r   _scale   s
    



zSqueezeExcitation._scalec                 C   s   |  |}|| S r^   )rk   rj   r   r   r   r,     s    
zSqueezeExcitation.forward)r/   r2   r3   r4   r   rW   rY   ZSigmoidr5   r   r[   r   r   rk   r,   r;   r   r   r   r   ra      s   ra   c                	       sj   e Zd ZdZdejjdddfeee e	e
dejjf  e	e
dejjf  e	e eed fddZ  ZS )	MLPa  This block implements the multi-layer perceptron (MLP) module.

    Args:
        in_channels (int): Number of channels of the input
        hidden_channels (List[int]): List of the hidden channel dimensions
        norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the linear layer. If ``None`` this layer won't be used. Default: ``None``
        activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the linear layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
        inplace (bool, optional): Parameter for the activation layer, which can optionally do the operation in-place.
            Default is ``None``, which uses the respective default values of the ``activation_layer`` and Dropout layer.
        bias (bool): Whether to use bias in the linear layer. Default ``True``
        dropout (float): The probability for the dropout layer. Default: 0.0
    NTg        .)r>   hidden_channelsrD   rE   rG   r   dropoutc                    s   |d u ri nd|i}g }	|}
|d d D ]d}|	 tjj|
||d |d urZ|	 || |	 |f i | |	 tjj|fi | |}
q(|	 tjj|
|d |d |	 tjj|fi | t j|	  t|  d S )NrG   r'   )r   )rR   r   rW   ZLinearZDropoutr   r   r   )r   r>   rm   rD   rE   rG   r   rn   rV   rU   Zin_dimZ
hidden_dimr   r   r   r     s    zMLP.__init__)r/   r2   r3   r4   r   rW   rY   r5   r:   r   r   r[   r9   r6   r   r;   r   r   r   r   rl     s   rl   c                       s:   e Zd ZdZee d fddZeedddZ  Z	S )PermutezThis module returns a view of the tensor input with its dimensions permuted.

    Args:
        dims (List[int]): The desired ordering of dimensions
    )dimsc                    s   t    || _d S r^   )r   r   rp   )r   rp   r   r   r   r   <  s    
zPermute.__init__r#   c                 C   s   t || jS r^   )r   Zpermuterp   )r   r$   r   r   r   r,   @  s    zPermute.forward)
r/   r2   r3   r4   r:   r5   r   r   r,   r;   r   r   r   r   ro   5  s   ro   )rS   collections.abcr   typingr   r   r   r   r   utilsr   r	   rW   Z
functionalZinterpolater[   r
   Z
Sequentialr<   r\   r`   ra   rl   ro   r   r   r   r   <module>   s   
7921'-