a
    hm`                     @   s  d Z ddlmZmZmZ ddlZddlmZ ddlmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZmZ ddgZG d	d deZd
de de de de de
 d e_ ee ee ee ee ee eeeeeeeeeedddZee ee ee ee ee eeeeeeeeeedddZeeddee ee ee ee ee eee eeeeeeeeedddZdS )z'Implementation for the RAdam algorithm.    )castOptionalUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype
_get_value_maximize_doc_params_doc
_to_scalar_use_grad_for_differentiable_view_as_real	OptimizerParamsTRAdamradamc                       sx   e Zd Zddddddeeeef eeef eeee	e eeed
 fd	d
Z
 fddZdd ZedddZ  ZS )r   MbP?g?g+?:0yE>r   FN)foreachmaximize
capturabledifferentiable)
paramslrbetasepsweight_decaydecoupled_weight_decayr   r   r   r   c                   s   t |tr| dkrtdd|ks4td| d|ksJtd| d|d   krbdk svn td|d  d|d   krdk sn td	|d  d|kstd
| t|||||||	||
d	}t || d S )Nr   zTensor lr must be 1-element        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: z#Invalid beta parameter at index 1: zInvalid weight_decay value: )	r    r!   r"   r#   r   r   r   r$   r   )
isinstancer   Znumel
ValueErrordictsuper__init__)selfr   r    r!   r"   r#   r$   r   r   r   r   defaults	__class__ ?/var/www/auris/lib/python3.9/site-packages/torch/optim/radam.pyr+       s0    zRAdam.__init__c                    s   t  | | jD ]}|dd  |dd |dd |dd |dd |d D ]h}| j|g }t|dkrZt|d	 sZt	|d	 }|d rtj
|t |jd
ntj
|t d|d	< qZqd S )Nr   r   Fr   r$   r   r   r   stepdtypedevicer4   )r*   __setstate__param_groups
setdefaultstategetlentorchZ	is_tensorfloattensorr   r5   )r,   r:   grouppZp_stateZstep_valr.   r0   r1   r7   H   s"    

zRAdam.__setstate__c           
      C   s   d}|d D ]}|j d ur|t|O }|| |j jrBtd||j  | j| }	t|	dkr|d rtjdt	 |j
dntjdt	 d	|	d
< tj|tjd|	d< tj|tjd|	d< ||	d  ||	d  ||	d
  q|S )NFr   z'RAdam does not support sparse gradientsr   r   r0   r3   r%   r6   r2   )Zmemory_formatexp_avg
exp_avg_sq)gradr=   
is_complexappendZ	is_sparseRuntimeErrorr:   r<   zerosr   r5   r?   Z
zeros_likeZpreserve_format)
r,   r@   params_with_gradgradsexp_avgsexp_avg_sqsstate_stepshas_complexrA   r:   r0   r0   r1   _init_group\   s0    




zRAdam._init_groupc                 C   s   |    d}|durBt  | }W d   n1 s80    Y  | jD ]}g }g }g }g }g }ttttf |d \}	}
| ||||||}t||||||	|
|d |d |d |d |d |d |d	 |d
 |d qH|S )zPerform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr!   r    r#   r"   r   r   r   r   r$   )beta1beta2r    r#   r"   r   r   r   r   r$   rN   )	Z _cuda_graph_capture_health_checkr=   Zenable_gradr8   r   tupler>   rO   r   )r,   closureZlossr@   rI   rJ   rK   rL   rM   rP   rQ   rN   r0   r0   r1   r2      sD    
$
z
RAdam.step)r   r   r   r   F)N)__name__
__module____qualname__r   r   r>   r   rR   boolr   r+   r7   rO   r   r2   __classcell__r0   r0   r.   r1   r      s4        	

(#a  Implements RAdam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \beta_1, \beta_2
                \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
                \lambda \text{ (weightdecay)}, \:\textit{maximize}                               \\
            &\hspace{13mm} \epsilon \text{ (epsilon)}, \textit{decoupled\_weight\_decay}         \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0 \leftarrow 0 \text{ ( second moment)},                                       \\
            &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1                      \\[-1.ex]
            &\rule{110mm}{0.4pt}  \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{6mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{12mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{6mm} \theta_t \leftarrow \theta_{t-1}                                       \\
            &\hspace{6mm} \textbf{if} \: \lambda \neq 0                                          \\
            &\hspace{12mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\
            &\hspace{18mm} \theta_t \leftarrow \theta_{t} - \gamma \lambda \theta_{t}            \\
            &\hspace{12mm}\textbf{else}                                                          \\
            &\hspace{18mm} g_t \leftarrow g_t + \lambda \theta_{t}                               \\
            &\hspace{6mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{6mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{6mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
                2 t \beta^t_2 /\big(1-\beta_2^t \big)                                    \\[0.1.ex]
            &\hspace{6mm}\textbf{if} \: \rho_t > 5                                               \\
            &\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon  } \\
            &\hspace{12mm} r_t \leftarrow
      \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} r_t l_t        \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}                \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.

    This implementation provides an option to use either the original weight_decay implementation as in Adam
    (where the weight_decay is applied to the gradient) or the one from AdamW (where weight_decay is applied
    to the weight) through the decoupled_weight_decay option. When decoupled_weight_decay is set to False
    (default), it uses the original Adam style weight decay, otherwise, it uses the AdamW style which
    corresponds more closely to the `author's implementation`_ in the RAdam paper. Further information
    about decoupled weight decay can be found in `Decoupled Weight Decay Regularization`_.

    z
    Args:
        a  
        lr (float, Tensor, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        decoupled_weight_decay (bool, optional): whether to decouple the weight
            decay as in AdamW to obtain RAdamW. If True, the algorithm does not
            accumulate weight decay in the momentum nor variance. (default: False)
        z	
        a  

    .. _On the variance of the adaptive learning rate and beyond:
        https://arxiv.org/abs/1908.03265
    .. _author's implementation:
        https://github.com/LiyuanLucasLiu/RAdam
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101

    )r   rJ   rK   rL   rM   rP   rQ   r    r#   r"   r$   r   r   r   rN   c       
            s  t j st|}t| D ]\}}|s0|| n||  }|| }|| || }t j s|rt }|jj	|jj	kr|jj	|v sJ d| dt 
|rt |}t |}t |}t |d7 }|r|nt|}|dkr|
r|d||   n|j||d}||d|  |j||d| d d||  }d||   || }dd|  d d| ||     fdd	} fd
d}|rt dk| |  d}|j|| | dd qdkr |j|| |  |  dd q|j|| dd qd S )NIIf capturable=True, params and state_steps must be on supported devices: .r   r   alpha)value   c                      s,   d d     d  d    d S )N   r^         ?r0   r0   )rho_infrho_tr0   r1   _compute_rectD  s    z+_single_tensor_radam.<locals>._compute_rectc                     s.     } r| } n
| }  d |  S )Nr`   )sqrtaddadd_)Zexp_avg_sq_sqrt)bias_correction2r   r"   rC   r0   r1   _compute_adaptive_lrL  s
    
z2_single_tensor_radam.<locals>._compute_adaptive_lr      @r&   g      )r=   jitis_scriptingr   	enumeratecompileris_compilingr   r5   typerE   Zview_as_realr   Zmul_re   Zlerp_Zaddcmul_whererf   )r   rJ   rK   rL   rM   rP   rQ   r    r#   r"   r$   r   r   r   rN   iparamrD   rB   Zstep_tcapturable_supported_devicesr2   bias_correction1Zbias_corrected_exp_avgrc   rh   updater0   )rg   r   r"   rC   ra   rb   r1   _single_tensor_radam   sh    










rv   c       
   %         sD  t | dkrd S |rJ dtj s`|r`tddtfddt| |D s`J d dtt	| ||||g}|
 D ]\\}}}}}}ttt |}ttt |}ttt |}ttt |}ttt |}tj s|d jrtj|tjd	d
dd	d nt|d |r2t|||| |rBt|}dd  d |rt|}t| t|d t|}t|| t|d t|| t| t| |}nfdd|D }|dkr(|
r t|d|   n(|rtj|||d ntj|||d}t||d   t| t|||d  ~|rt|d}t|d}t|| ~t| d d  t|} t||  ~ t| dd t||D }!~~dd |!D }"t|" t |}t| t|d t|"| t|" t|}t| t|d t| t| t||! ~!t| t|| ~nffdd|D }!dd |!D }# fdd|D }fddt|#|D }"fddt||!|D }t|}$t|$|	 t|$| t|$ t|$|" t|||$ qd S )Nr   z#_foreach ops don't support autogradF)Zsupports_xlac                 3   s.   | ]&\}}|j j|j jko$|j j v V  qd S N)r5   ro   ).0rA   r2   )rs   r0   r1   	<genexpr>  s   z&_multi_tensor_radam.<locals>.<genexpr>rY   rZ   r&   cpu)r5   r[   r   r^   c                    s8   g | ]0}d t |  t |  d t |    qS )r^   r   r   rx   r2   )rQ   ra   r0   r1   
<listcomp>  s   
z'_multi_tensor_radam.<locals>.<listcomp>r_   c                 S   s"   g | ]\}}t |d k|dqS )ri   r%   r=   rp   )rx   nrb   r0   r0   r1   r}     s   c                 S   s   g | ]}t |d kddqS )r   r%   r&   r~   rx   rectr0   r0   r1   r}         c                    sD   g | ]<}|d kr<|d |d     d  d  |  d ndqS )   r_   r^   r`   r   r0   )rx   rb   )ra   r0   r1   r}     s   
c                 S   s   g | ]}|d krd ndqS )r   r&   r0   r   r0   r0   r1   r}     r   c                    s   g | ]}d  t |  qS )r   r{   r|   )rP   r0   r1   r}     s   c                    s    g | ]\}} | | d  qS )r0   )rx   r   bc)r    r0   r1   r}     s   c                    s6   g | ].\}}}d  t |  d | |  d qS )r   r`   r   r{   )rx   r2   r   r   )rQ   r    r0   r1   r}      s   )r<   r=   rm   rn   r   allzipr   r   Z"_group_tensors_by_device_and_dtypevaluesr   listr   Zis_cpuZ_foreach_add_r?   r   Z_foreach_negZ_foreach_powZ_foreach_neg_Z_foreach_mul_Z_foreach_div_Z_foreach_addZ_foreach_lerp_Z_foreach_addcmul_Z_foreach_subZ_foreach_mulZ_foreach_sqrt_Z_foreach_sqrtZ_foreach_reciprocal_)%r   rJ   rK   rL   rM   rP   rQ   r    r#   r"   r$   r   r   r   rN   Zgrouped_tensorsZgrouped_params_Zgrouped_grads_Zgrouped_exp_avgs_Zgrouped_exp_avg_sqs_Zgrouped_state_steps__Zgrouped_paramsZgrouped_gradsZgrouped_exp_avgsZgrouped_exp_avg_sqsZgrouped_state_stepsrt   rg   Z
rho_t_listnumZsub2Zdenomr   Zunrect_step_sizeZunrectifiedbufferr0   )rP   rQ   rs   r    ra   r1   _multi_tensor_radamh  s    

	



	













r   )Zsingle_tensor_fnF)r   rJ   rK   rL   rM   r$   r   r   r   rN   r   rP   rQ   r    r#   r"   c                C   s   t dd |D std|du r4t| |dd\}}|rJtj rJtd|r^tj s^t}nt}|| ||||||||||
||||	d dS )	zpFunctional API that performs RAdam algorithm computation.

    See :class:`~torch.optim.RAdam` for details.
    c                 s   s   | ]}t |tjV  qd S rw   )r'   r=   r   )rx   tr0   r0   r1   ry   I  r   zradam.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)Z	use_fusedz6torch.jit.script not supported with foreach optimizers)
rP   rQ   r    r#   r"   r   r$   r   r   rN   )r   rG   r   r=   rj   rk   r   rv   )r   rJ   rK   rL   rM   r$   r   r   r   rN   r   rP   rQ   r    r#   r"   r   funcr0   r0   r1   r   /  s<    
)FNFFFF)__doc__typingr   r   r   r=   r   Z	optimizerr   r   r	   r
   r   r   r   r   r   r   r   r   r   r   r   __all__r   r   r>   rW   rv   r   r   r0   r0   r0   r1   <module>   s   D 3Qi H	      