a
    h)A                     @   sr  d dl mZmZmZmZ d dlZd dlmZ ddlmZm	Z	m
Z
mZmZmZmZmZmZmZmZmZmZmZ ddgZG dd deZd	d
e de de de de
 d e_ee ee ee ee ee eeeeeeeedddZee ee ee ee ee eeeeeeeedddZeeddee ee ee ee ee eee eeeeeeedddZdS )    )AnycastOptionalUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype_maximize_doc_params_doc
_to_scalar_use_grad_for_differentiable_view_as_real	OptimizerParamsTAdadeltaadadeltac                       s   e Zd Zdddddeeeef eeeee eeed	 fd	d
Z	 fddZ
eeef ee ee ee ee ee dddZedddZ  ZS )r         ??ư>r   NF)
capturablemaximizedifferentiable)	paramslrrhoepsweight_decayforeachr   r   r   c             
      s   t |tr| dkrtdd|ks4td| d|  krHdksXn td| d|ksntd| d|kstd| t||||||||	d	}
t ||
 d S )
Nr   zTensor lr must be 1-elementg        zInvalid learning rate: r   zInvalid rho value: zInvalid epsilon value: zInvalid weight_decay value: )r   r    r!   r"   r   r   r#   r   )
isinstancer   Znumel
ValueErrordictsuper__init__)selfr   r   r    r!   r"   r#   r   r   r   defaults	__class__ B/var/www/auris/lib/python3.9/site-packages/torch/optim/adadelta.pyr(      s*    
zAdadelta.__init__c                    s   t  | | jD ]}|dd  |dd |dd |dd |d D ]h}| j|g }t|dkrNt|d sNt	|d }|d rtj
|t |jd	ntj
|t d
|d< qNqd S )Nr#   r   Fr   r   r   r   stepdtypedevicer1   )r'   __setstate__param_groups
setdefaultstategetlentorchZ	is_tensorfloattensorr   r2   )r)   r7   grouppZp_stateZstep_valr+   r-   r.   r4   A   s     

zAdadelta.__setstate__)r=   params_with_gradgradssquare_avgs
acc_deltasstate_stepsc           
      C   s   d}|d D ]}|j d u rq|t|O }|| |j jrDtd||j  | j| }	t|	dkr|d rtjdt	 |j
dntjdt	 d|	d	< tj|tjd
|	d< tj|tjd
|	d< ||	d  ||	d  ||	d	  q|S )NFr   z*Adadelta does not support sparse gradientsr   r   r-   r0   r3   r/   )Zmemory_format
square_avg	acc_delta)gradr:   
is_complexappendZ	is_sparseRuntimeErrorr7   r9   zerosr   r2   Z
zeros_likeZpreserve_format)
r)   r=   r?   r@   rA   rB   rC   has_complexr>   r7   r-   r-   r.   _init_groupT   s2    	




zAdadelta._init_groupc                 C   s   |    d}|durBt  | }W d   n1 s80    Y  | jD ]}g }g }g }g }g }|d |d |d |d |d |d |d |d	 f\}	}
}}}}}}| ||||||}t||||||	|
|||||||d
 qH|S )zPerform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r    r!   r"   r#   r   r   r   )	r   r    r!   r"   r#   r   r   r   rK   )Z _cuda_graph_capture_health_checkr:   Zenable_gradr5   rL   r   )r)   closureZlossr=   r?   r@   rA   rB   rC   r   r    r!   r"   r#   r   r   r   rK   r-   r-   r.   r/      sb    
$
zAdadelta.step)r   r   r   r   N)N)__name__
__module____qualname__r   r   r;   r   r   boolr(   r4   r&   strr   listrL   r   r/   __classcell__r-   r-   r+   r.   r      s<        	
$
+a  Implements Adadelta algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)},
                \: f(\theta) \text{ (objective)}, \: \rho \text{ (decay)},
                \: \lambda \text{ (weight decay)}                                                \\
            &\textbf{initialize} :  v_0  \leftarrow 0 \: \text{ (square avg)},
                \: u_0 \leftarrow 0 \: \text{ (accumulate variables)}                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm}if \: \lambda \neq 0                                                    \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm} v_t      \leftarrow v_{t-1} \rho + g^2_t (1 - \rho)                    \\
            &\hspace{5mm}\Delta x_t    \leftarrow   \frac{\sqrt{u_{t-1} +
                \epsilon }}{ \sqrt{v_t + \epsilon}  }g_t \hspace{21mm}                           \\
            &\hspace{5mm} u_t  \leftarrow   u_{t-1}  \rho +
                 \Delta x^2_t  (1 - \rho)                                                        \\
            &\hspace{5mm}\theta_t      \leftarrow   \theta_{t-1} - \gamma  \Delta x_t            \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `ADADELTA: An Adaptive Learning Rate Method`_.
    z
    Args:
        ar  
        lr (float, Tensor, optional): coefficient that scale delta before it is applied
            to the parameters (default: 1.0)
        rho (float, optional): coefficient used for computing a running average
            of squared gradients (default: 0.9). A higher value of `rho` will
            result in a slower average, which can be helpful for preventing
            oscillations in the learning process.
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-6).
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        z	
        zd

    .. _ADADELTA\: An Adaptive Learning Rate Method:
        https://arxiv.org/abs/1212.5701

    )r   r@   rA   rB   rC   r   r    r!   r"   r   r   r   rK   c                   sb  t j sD|rDtdd t fddt| |D sDJ d  dt j sVt|}t| ||||D ]\}}}}}|d7 }|	s|n| }|dkr|j	||d	}t 
|rt |}t |}t |}||j||d| d
 |	| }|	| }|
r| }||| ||j||d| d
 t 
|rLt |}|j|| d	 qfd S )NFZsupports_xlac                 3   s.   | ]&\}}|j j|j jko$|j j v V  qd S Nr2   type.0r>   r/   Zcapturable_supported_devicesr-   r.   	<genexpr>
  s   z*_single_tensor_adadelta.<locals>.<genexpr>IIf capturable=True, params and state_steps must be on supported devices: .r   r   alphavalue)r:   compileris_compilingr   allzipjitis_scriptingr   addrG   Zview_as_realZmul_Zaddcmul_Zsqrt_cloneZdiv_Zview_as_complexZadd_)r   r@   rA   rB   rC   r   r    r!   r"   r   r   r   rK   paramrF   rD   rE   r/   stddeltar-   r[   r.   _single_tensor_adadelta   s@    








rn   c                   sB  |
rJ dt j sP|rPtdd t fddt| |D sPJ d  dt| dkr`d S t|}t	| ||||g}|
 D ]\\}}}}}}ttt |}ttt |}ttt |}ttt |}ttt |}|rt|||| t j s$|d jr$t j|t jd	d
dd	d nt |d |	r@t |}|dkrr|	rbt j|||d nt j|||d}t || t j|||d| d t ||}t | t ||}t | t || t || t || t j|||d| d |r*t|t jr*t ||  t || qt j||| d qd S )Nz#_foreach ops don't support autogradFrU   c                 3   s.   | ]&\}}|j j|j jko$|j j v V  qd S rV   rW   rY   r[   r-   r.   r\   G  s   z)_multi_tensor_adadelta.<locals>.<genexpr>r]   r^   r   r   cpu)r2   r_   r   ra   )r:   rc   rd   r   re   rf   r9   r   r   Z"_group_tensors_by_device_and_dtypevaluesr   rS   r   r   Zis_cpuZ_foreach_add_r<   Z_foreach_negZ_foreach_addZ_foreach_mul_Z_foreach_addcmul_Z_foreach_sqrt_Z_foreach_div_r$   )r   r@   rA   rB   rC   r   r    r!   r"   r   r   r   rK   Zgrouped_tensorsZdevice_params_Zdevice_grads_Zdevice_square_avgs_Zdevice_acc_deltas_Zdevice_state_steps__Zdevice_paramsZdevice_gradsZdevice_square_avgsZdevice_acc_deltasZdevice_state_stepsrl   Zdeltasr-   r[   r.   _multi_tensor_adadelta0  s|    

	




rr   )Zsingle_tensor_fnF)r   r@   rA   rB   rC   r   r#   r   rK   r   r    r!   r"   r   c	                C   s   t j s$tdd |D s$td|du r>t| |dd\}}|rTt j rTtd|rht j sht}nt	}|| |||||	|
||||||d dS )	zvFunctional API that performs Adadelta algorithm computation.

    See :class:`~torch.optim.Adadelta` for details.
    c                 s   s   | ]}t |tjV  qd S rV   )r$   r:   r   )rZ   tr-   r-   r.   r\     s   zadadelta.<locals>.<genexpr>zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)Z	use_fusedz6torch.jit.script not supported with foreach optimizers)r   r    r!   r"   r   r   r   rK   )
r:   rc   rd   re   rI   r	   rg   rh   rr   rn   )r   r@   rA   rB   rC   r   r#   r   rK   r   r    r!   r"   r   rq   funcr-   r-   r.   r     s<    
)FNFF)typingr   r   r   r   r:   r   Z	optimizerr   r	   r
   r   r   r   r   r   r   r   r   r   r   r   __all__r   __doc__rS   r;   rQ   rn   rr   r   r-   r-   r-   r.   <module>   s   @ &6<h	    