a
    h"                     @  s   d dl mZ d dlZd dlmZ d dlZg dZedddZedd	dZddddddddZ	ddddddddddd	ddZ
ddddddZdddddddddddZdS )    )annotationsN)TypeVar)fuse_conv_bn_evalfuse_conv_bn_weightsfuse_linear_bn_evalfuse_linear_bn_weightsConvTztorch.nn.modules.conv._ConvNd)boundLinearTztorch.nn.LinearFz%torch.nn.modules.batchnorm._BatchNormbool)convbn	transposereturnc              	   C  sf   | j s|j rJ dt| }|jdur2|jdus6J t|j|j|j|j|j|j|j|\|_|_|S )a+  Fuse a convolutional module and a BatchNorm module into a single, new convolutional module.

    Args:
        conv (torch.nn.modules.conv._ConvNd): A convolutional module.
        bn (torch.nn.modules.batchnorm._BatchNorm): A BatchNorm module.
        transpose (bool, optional): If True, transpose the convolutional weight. Defaults to False.

    Returns:
        torch.nn.modules.conv._ConvNd: The fused convolutional module.

    .. note::
        Both ``conv`` and ``bn`` must be in eval mode, and ``bn`` must have its running buffers computed.
    Fusion only for eval!N)	trainingcopydeepcopyrunning_meanrunning_varr   weightbiaseps)r   r   r   Z
fused_conv r   C/var/www/auris/lib/python3.9/site-packages/torch/nn/utils/fusion.pyr      s    
r   ztorch.Tensorztorch.Tensor | Nonefloatz-tuple[torch.nn.Parameter, torch.nn.Parameter])	conv_wconv_bbn_rmbn_rvbn_epsbn_wbn_br   r   c                 C  s   | j }|dur|j n|}	|du r*t|}|du r<t|}|du rNt|}t|| }
|r~ddgdgt| jd   }nddgdgt| jd   }| ||
 | j|d}|| |
 | | j|	d}tj	
|| jtj	
||jfS )a  Fuse convolutional module parameters and BatchNorm module parameters into new convolutional module parameters.

    Args:
        conv_w (torch.Tensor): Convolutional weight.
        conv_b (Optional[torch.Tensor]): Convolutional bias.
        bn_rm (torch.Tensor): BatchNorm running mean.
        bn_rv (torch.Tensor): BatchNorm running variance.
        bn_eps (float): BatchNorm epsilon.
        bn_w (Optional[torch.Tensor]): BatchNorm weight.
        bn_b (Optional[torch.Tensor]): BatchNorm bias.
        transpose (bool, optional): If True, transpose the conv weight. Defaults to False.

    Returns:
        Tuple[torch.nn.Parameter, torch.nn.Parameter]: Fused convolutional weight and bias.
    N      dtype)r'   torch
zeros_likeZ	ones_likersqrtlenshapeZreshapetonn	Parameterrequires_grad)r   r   r   r   r    r!   r"   r   Zconv_weight_dtypeZconv_bias_dtypeZbn_var_rsqrtr,   Zfused_conv_wZfused_conv_br   r   r   r   8   s*    


r   )linearr   r   c                 C  s   | j s|j rJ dt| }| j|jks<|jdks<J d|jdurP|jdusTJ t|j|j	|j|j|j
|j|j	\|_|_	|S )a  Fuse a linear module and a BatchNorm module into a single, new linear module.

    Args:
        linear (torch.nn.Linear): A Linear module.
        bn (torch.nn.modules.batchnorm._BatchNorm): A BatchNorm module.

    Returns:
        torch.nn.Linear: The fused linear module.

    .. note::
        Both ``linear`` and ``bn`` must be in eval mode, and ``bn`` must have its running buffers computed.
    r   r#   zGTo fuse, linear.out_features == bn.num_features or bn.num_features == 1N)r   r   r   Zout_featuresZnum_featuresr   r   r   r   r   r   )r1   r   Zfused_linearr   r   r   r   m   s     

r   )linear_wlinear_br   r   r    r!   r"   r   c                 C  s   | j }|dur|j n|}|du r*t|}|t||  }	| |	dj|d }
|| |	 | j|d}tj|
| jtj||jfS )a2  Fuse linear module parameters and BatchNorm module parameters into new linear module parameters.

    Args:
        linear_w (torch.Tensor): Linear weight.
        linear_b (Optional[torch.Tensor]): Linear bias.
        bn_rm (torch.Tensor): BatchNorm running mean.
        bn_rv (torch.Tensor): BatchNorm running variance.
        bn_eps (float): BatchNorm epsilon.
        bn_w (torch.Tensor): BatchNorm weight.
        bn_b (torch.Tensor): BatchNorm bias.

    Returns:
        Tuple[torch.nn.Parameter, torch.nn.Parameter]: Fused linear weight and bias.
    Nr$   r&   )	r'   r(   r)   r*   Z	unsqueezer-   r.   r/   r0   )r2   r3   r   r   r    r!   r"   Zlinear_weight_dtypeZlinear_bias_dtypeZbn_scaleZfused_wZfused_br   r   r   r      s    
r   )F)F)
__future__r   r   typingr   r(   __all__r   r
   r   r   r   r   r   r   r   r   <module>   s    ,  5/