a
    kh[%                     @   s   d Z ddlmZmZmZmZmZmZmZ ddl	m
Z
 ddlmZmZmZ ddlmZmZmZmZmZmZmZ ddgZeeeefeeeefeeeefee
eeeeefeeeeiZdd	 e D Zd
d Zdd Zdd Zdd Zdd Z dd Z!dS )a   A module for mapping operators to their corresponding eigenstates
and vice versa

It contains a global dictionary with eigenstate-operator pairings.
If a new state-operator pair is created, this dictionary should be
updated as well.

It also contains functions operators_to_state and state_to_operators
for mapping between the two. These can handle both classes and
instances of operators and states. See the individual function
descriptions for details.

TODO List:
- Update the dictionary with a complete list of state-operator pairs
    )XOpYOpZOpXKetPxOpPxKetPositionKet3D)Operator)	StateBaseBraBaseKet)JxOpJyOpJzOpJ2OpJxKetJyKetJzKetoperators_to_statestate_to_operatorsc                 C   s   i | ]\}}||qS  r   ).0kvr   r   O/var/www/auris/lib/python3.9/site-packages/sympy/physics/quantum/operatorset.py
<dictcomp>,       r   c           	      K   sh  t | ttfs t| ts tdt | tr| D ] }t |ts.t|ts.tdq.t| }|tv rz,dd |D }tt| t|fi |}W n ty   t| }Y n0 |S dd |D }t|}|tv rtt| |fi |}nd}|S nx| tv r8z |  }tt|  |fi |}W n ty2   t|  }Y n0 |S t| tv r`ttt|  | fi |S dS dS )a.   Returns the eigenstate of the given operator or set of operators

    A global function for mapping operator classes to their associated
    states. It takes either an Operator or a set of operators and
    returns the state associated with these.

    This function can handle both instances of a given operator or
    just the class itself (i.e. both XOp() and XOp)

    There are multiple use cases to consider:

    1) A class or set of classes is passed: First, we try to
    instantiate default instances for these operators. If this fails,
    then the class is simply returned. If we succeed in instantiating
    default instances, then we try to call state._operators_to_state
    on the operator instances. If this fails, the class is returned.
    Otherwise, the instance returned by _operators_to_state is returned.

    2) An instance or set of instances is passed: In this case,
    state._operators_to_state is called on the instances passed. If
    this fails, a state class is returned. If the method returns an
    instance, that instance is returned.

    In both cases, if the operator class or set does not exist in the
    state_mapping dictionary, None is returned.

    Parameters
    ==========

    arg: Operator or set
         The class or instance of the operator or set of operators
         to be mapped to a state

    Examples
    ========

    >>> from sympy.physics.quantum.cartesian import XOp, PxOp
    >>> from sympy.physics.quantum.operatorset import operators_to_state
    >>> from sympy.physics.quantum.operator import Operator
    >>> operators_to_state(XOp)
    |x>
    >>> operators_to_state(XOp())
    |x>
    >>> operators_to_state(PxOp)
    |px>
    >>> operators_to_state(PxOp())
    |px>
    >>> operators_to_state(Operator)
    |psi>
    >>> operators_to_state(Operator())
    |psi>
    z%Argument is not an Operator or a set!zSet is not all Operators!c                 S   s   g | ]
}| qS r   r   )r   opr   r   r   
<listcomp>t   r   z&operators_to_state.<locals>.<listcomp>c                 S   s   g | ]}t |qS r   )type)r   or   r   r   r   {   r   N)	
isinstancer	   set
issubclassNotImplementedError	frozenset
op_mapping
_get_stater   )		operatorsoptionssopsZop_instancesrettmpclassesZop_instancer   r   r   r   /   s@    6



c              	   K   s6  t | tst| tstd| tv rlt| }zt|tt|  fi |}W n ttfyh   t|  }Y n0 nt	| tv rt| ttt	|  fi |}nt | t
r|  tv rt| tt|   }nht| t
r*|  tv r*t| }zt|tt|   }W n$ ttfy&   t|   }Y n0 nd}t|S )a`   Returns the operator or set of operators corresponding to the
    given eigenstate

    A global function for mapping state classes to their associated
    operators or sets of operators. It takes either a state class
    or instance.

    This function can handle both instances of a given state or just
    the class itself (i.e. both XKet() and XKet)

    There are multiple use cases to consider:

    1) A state class is passed: In this case, we first try
    instantiating a default instance of the class. If this succeeds,
    then we try to call state._state_to_operators on that instance.
    If the creation of the default instance or if the calling of
    _state_to_operators fails, then either an operator class or set of
    operator classes is returned. Otherwise, the appropriate
    operator instances are returned.

    2) A state instance is returned: Here, state._state_to_operators
    is called for the instance. If this fails, then a class or set of
    operator classes is returned. Otherwise, the instances are returned.

    In either case, if the state's class does not exist in
    state_mapping, None is returned.

    Parameters
    ==========

    arg: StateBase class or instance (or subclasses)
         The class or instance of the state to be mapped to an
         operator or set of operators

    Examples
    ========

    >>> from sympy.physics.quantum.cartesian import XKet, PxKet, XBra, PxBra
    >>> from sympy.physics.quantum.operatorset import state_to_operators
    >>> from sympy.physics.quantum.state import Ket, Bra
    >>> state_to_operators(XKet)
    X
    >>> state_to_operators(XKet())
    X
    >>> state_to_operators(PxKet)
    Px
    >>> state_to_operators(PxKet())
    Px
    >>> state_to_operators(PxBra)
    Px
    >>> state_to_operators(XBra)
    X
    >>> state_to_operators(Ket)
    O
    >>> state_to_operators(Bra)
    O
    zArgument is not a state!N)r!   r
   r#   r$   state_mapping_make_default_get_ops	_make_set	TypeErrorr   r   Z
dual_class)stater)   
state_instr,   r   r   r   r      s@    ;

c                 C   s&   z
|  }W n t y    | }Y n0 |S N)r3   )exprr,   r   r   r   r0      s
    

r0   c                 K   s6   z| j |fi |}W n ty0   t| }Y n0 |S r6   )Z_operators_to_stater$   r0   )Zstate_classr+   r)   r,   r   r   r   r'      s
    r'   c                 K   sx   z| j |fi |}W n> tyT   t|tttfrHtdd |D }nt|}Y n0 t|trtt|dkrt|d S |S )Nc                 s   s   | ]}t |V  qd S r6   )r0   )r   xr   r   r   	<genexpr>	  r   z_get_ops.<locals>.<genexpr>   r   )Z_state_to_operatorsr$   r!   r"   tupler%   r0   len)r5   Z
op_classesr)   r,   r   r   r   r1     s    r1   c                 C   s    t | tttfrt| S | S d S r6   )r!   r;   listr%   r"   )r+   r   r   r   r2     s    r2   N)"__doc__Zsympy.physics.quantum.cartesianr   r   r   r   r   r   r   Zsympy.physics.quantum.operatorr	   Zsympy.physics.quantum.stater
   r   r   Zsympy.physics.quantum.spinr   r   r   r   r   r   r   __all__r%   r/   itemsr&   r   r   r0   r'   r1   r2   r   r   r   r   <module>   s,   $$dX