a
    kh+0                     @   st  d Z ddlmZmZ ddlmZ ddlmZ ddlm	Z	 ddl
mZmZ ddlmZ ddlmZmZmZ d	d
 ZG dd deZdd ZG dd deZe	dZdd ZG dd deZdd ZG dd deZdd ZG dd deZe	dZdd  ZG d!d" d"eZ d#d$ Z!G d%d& d&eZ"d'd( Z#G d)d* d*eZ$d+d, Z%G d-d. d.eZ&G d/d0 d0eZ'G d1d2 d2eZ(d3S )4a#  
This module contains SymPy functions mathcin corresponding to special math functions in the
C standard library (since C99, also available in C++11).

The functions defined in this module allows the user to express functions such as ``expm1``
as a SymPy function for symbolic manipulation.

    )ArgumentIndexErrorFunction)Rational)Pow)S)explog)sqrt)BooleanFunctiontruefalsec                 C   s   t | tj S Nr   r   Onex r   F/var/www/auris/lib/python3.9/site-packages/sympy/codegen/cfunctions.py_expm1   s    r   c                   @   sN   e Zd ZdZdZdddZdd Zdd ZeZe	d	d
 Z
dd Zdd ZdS )expm1a*  
    Represents the exponential function minus one.

    Explanation
    ===========

    The benefit of using ``expm1(x)`` over ``exp(x) - 1``
    is that the latter is prone to cancellation under finite precision
    arithmetic when x is close to zero.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import expm1
    >>> '%.0e' % expm1(1e-99).evalf()
    '1e-99'
    >>> from math import exp
    >>> exp(1e-99) - 1
    0.0
    >>> expm1(x).diff(x)
    exp(x)

    See Also
    ========

    log1p
       c                 C   s    |dkrt | j S t| |dS @
        Returns the first derivative of this function.
        r   N)r   argsr   selfZargindexr   r   r   fdiff4   s    
zexpm1.fdiffc                 K   s
   t | j S r   )r   r   r   hintsr   r   r   _eval_expand_func=   s    zexpm1._eval_expand_funcc                 K   s   t |tj S r   r   r   argkwargsr   r   r   _eval_rewrite_as_exp@   s    zexpm1._eval_rewrite_as_expc                 C   s    t |}|d ur|tj S d S r   )r   evalr   r   )clsr!   Zexp_argr   r   r   r$   E   s    
z
expm1.evalc                 C   s   | j d jS Nr   )r   Zis_realr   r   r   r   _eval_is_realK   s    zexpm1._eval_is_realc                 C   s   | j d jS r&   )r   	is_finiter'   r   r   r   _eval_is_finiteN   s    zexpm1._eval_is_finiteN)r   )__name__
__module____qualname____doc__nargsr   r   r#   _eval_rewrite_as_tractableclassmethodr$   r(   r*   r   r   r   r   r      s   
	
r   c                 C   s   t | tj S r   )r   r   r   r   r   r   r   _log1pR   s    r2   c                   @   sf   e Zd ZdZdZdddZdd Zdd ZeZe	d	d
 Z
dd Zdd Zdd Zdd Zdd ZdS )log1paf  
    Represents the natural logarithm of a number plus one.

    Explanation
    ===========

    The benefit of using ``log1p(x)`` over ``log(x + 1)``
    is that the latter is prone to cancellation under finite precision
    arithmetic when x is close to zero.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import log1p
    >>> from sympy import expand_log
    >>> '%.0e' % expand_log(log1p(1e-99)).evalf()
    '1e-99'
    >>> from math import log
    >>> log(1 + 1e-99)
    0.0
    >>> log1p(x).diff(x)
    1/(x + 1)

    See Also
    ========

    expm1
    r   c                 C   s,   |dkrt j| jd t j  S t| |dS r   r   r   N)r   r   r   r   r   r   r   r   r   w   s    zlog1p.fdiffc                 K   s
   t | j S r   )r2   r   r   r   r   r   r      s    zlog1p._eval_expand_funcc                 K   s   t |S r   )r2   r    r   r   r   _eval_rewrite_as_log   s    zlog1p._eval_rewrite_as_logc                 C   sF   |j rt|tj S |js*t|tj S |jrBtt|tj S d S r   )Zis_Rationalr   r   r   Zis_Floatr$   	is_numberr   r%   r!   r   r   r   r$      s    z
log1p.evalc                 C   s   | j d tj jS r&   )r   r   r   is_nonnegativer'   r   r   r   r(      s    zlog1p._eval_is_realc                 C   s"   | j d tj jrdS | j d jS )Nr   F)r   r   r   is_zeror)   r'   r   r   r   r*      s    zlog1p._eval_is_finitec                 C   s   | j d jS r&   )r   Zis_positiver'   r   r   r   _eval_is_positive   s    zlog1p._eval_is_positivec                 C   s   | j d jS r&   )r   r9   r'   r   r   r   _eval_is_zero   s    zlog1p._eval_is_zeroc                 C   s   | j d jS r&   )r   r8   r'   r   r   r   _eval_is_nonnegative   s    zlog1p._eval_is_nonnegativeN)r   )r+   r,   r-   r.   r/   r   r   r5   r0   r1   r$   r(   r*   r:   r;   r<   r   r   r   r   r3   V   s   


r3      c                 C   s
   t t| S r   )r   _Twor   r   r   r   _exp2   s    r?   c                   @   s>   e Zd ZdZdZdddZdd ZeZdd Ze	d	d
 Z
dS )exp2a  
    Represents the exponential function with base two.

    Explanation
    ===========

    The benefit of using ``exp2(x)`` over ``2**x``
    is that the latter is not as efficient under finite precision
    arithmetic.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import exp2
    >>> exp2(2).evalf() == 4.0
    True
    >>> exp2(x).diff(x)
    log(2)*exp2(x)

    See Also
    ========

    log2
    r   c                 C   s"   |dkr| t t S t| |dS r   )r   r>   r   r   r   r   r   r      s    z
exp2.fdiffc                 K   s   t |S r   )r?   r    r   r   r   _eval_rewrite_as_Pow   s    zexp2._eval_rewrite_as_Powc                 K   s
   t | j S r   )r?   r   r   r   r   r   r      s    zexp2._eval_expand_funcc                 C   s   |j rt|S d S r   )r6   r?   r7   r   r   r   r$      s    z	exp2.evalN)r   )r+   r,   r-   r.   r/   r   rA   r0   r   r1   r$   r   r   r   r   r@      s   
	r@   c                 C   s   t | t t S r   )r   r>   r   r   r   r   _log2   s    rB   c                   @   sF   e Zd ZdZdZdddZedd Zdd Zd	d
 Z	dd Z
e
ZdS )log2a  
    Represents the logarithm function with base two.

    Explanation
    ===========

    The benefit of using ``log2(x)`` over ``log(x)/log(2)``
    is that the latter is not as efficient under finite precision
    arithmetic.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import log2
    >>> log2(4).evalf() == 2.0
    True
    >>> log2(x).diff(x)
    1/(x*log(2))

    See Also
    ========

    exp2
    log10
    r   c                 C   s.   |dkr t jtt| jd   S t| |dS r4   )r   r   r   r>   r   r   r   r   r   r   r      s    z
log2.fdiffc                 C   s:   |j r tj|td}|jr6|S n|jr6|jtkr6|jS d S N)base)r6   r   r$   r>   is_Atomis_PowrE   r   r%   r!   resultr   r   r   r$     s    z	log2.evalc                 O   s   |  tj|i |S r   )Zrewriter   Zevalf)r   r   r"   r   r   r   _eval_evalf  s    zlog2._eval_evalfc                 K   s
   t | j S r   )rB   r   r   r   r   r   r     s    zlog2._eval_expand_funcc                 K   s   t |S r   )rB   r    r   r   r   r5     s    zlog2._eval_rewrite_as_logN)r   )r+   r,   r-   r.   r/   r   r1   r$   rJ   r   r5   r0   r   r   r   r   rC      s   


rC   c                 C   s   | | | S r   r   )r   yzr   r   r   _fma  s    rM   c                   @   s0   e Zd ZdZdZdddZdd Zdd	d
ZdS )fmaa  
    Represents "fused multiply add".

    Explanation
    ===========

    The benefit of using ``fma(x, y, z)`` over ``x*y + z``
    is that, under finite precision arithmetic, the former is
    supported by special instructions on some CPUs.

    Examples
    ========

    >>> from sympy.abc import x, y, z
    >>> from sympy.codegen.cfunctions import fma
    >>> fma(x, y, z).diff(x)
    y

       r   c                 C   s2   |dv r| j d|  S |dkr$tjS t| |dS )r   r   r=   r=   rO   N)r   r   r   r   r   r   r   r   r   6  s
    z	fma.fdiffc                 K   s
   t | j S r   )rM   r   r   r   r   r   r   B  s    zfma._eval_expand_funcNc                 K   s   t |S r   )rM   )r   r!   Zlimitvarr"   r   r   r   r0   E  s    zfma._eval_rewrite_as_tractable)r   )N)r+   r,   r-   r.   r/   r   r   r0   r   r   r   r   rN      s
   
rN   
   c                 C   s   t | t t S r   )r   _Tenr   r   r   r   _log10L  s    rS   c                   @   s>   e Zd ZdZdZdddZedd Zdd Zd	d
 Z	e	Z
dS )log10a$  
    Represents the logarithm function with base ten.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import log10
    >>> log10(100).evalf() == 2.0
    True
    >>> log10(x).diff(x)
    1/(x*log(10))

    See Also
    ========

    log2
    r   c                 C   s.   |dkr t jtt| jd   S t| |dS r4   )r   r   r   rR   r   r   r   r   r   r   r   e  s    zlog10.fdiffc                 C   s:   |j r tj|td}|jr6|S n|jr6|jtkr6|jS d S rD   )r6   r   r$   rR   rF   rG   rE   r   rH   r   r   r   r$   o  s    z
log10.evalc                 K   s
   t | j S r   )rS   r   r   r   r   r   r   x  s    zlog10._eval_expand_funcc                 K   s   t |S r   )rS   r    r   r   r   r5   {  s    zlog10._eval_rewrite_as_logN)r   )r+   r,   r-   r.   r/   r   r1   r$   r   r5   r0   r   r   r   r   rT   P  s   


rT   c                 C   s   t | tjS r   )r   r   ZHalfr   r   r   r   _Sqrt  s    rU   c                   @   s2   e Zd ZdZdZd
ddZdd Zdd ZeZd	S )Sqrta  
    Represents the square root function.

    Explanation
    ===========

    The reason why one would use ``Sqrt(x)`` over ``sqrt(x)``
    is that the latter is internally represented as ``Pow(x, S.Half)`` which
    may not be what one wants when doing code-generation.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import Sqrt
    >>> Sqrt(x)
    Sqrt(x)
    >>> Sqrt(x).diff(x)
    1/(2*sqrt(x))

    See Also
    ========

    Cbrt
    r   c                 C   s0   |dkr"t | jd tddt S t| |dS )r   r   r   r=   Nr   r   r   r>   r   r   r   r   r   r     s    z
Sqrt.fdiffc                 K   s
   t | j S r   )rU   r   r   r   r   r   r     s    zSqrt._eval_expand_funcc                 K   s   t |S r   )rU   r    r   r   r   rA     s    zSqrt._eval_rewrite_as_PowN)r   	r+   r,   r-   r.   r/   r   r   rA   r0   r   r   r   r   rV     s   
	rV   c                 C   s   t | tddS )Nr   rO   )r   r   r   r   r   r   _Cbrt  s    rZ   c                   @   s2   e Zd ZdZdZd
ddZdd Zdd ZeZd	S )Cbrta  
    Represents the cube root function.

    Explanation
    ===========

    The reason why one would use ``Cbrt(x)`` over ``cbrt(x)``
    is that the latter is internally represented as ``Pow(x, Rational(1, 3))`` which
    may not be what one wants when doing code-generation.

    Examples
    ========

    >>> from sympy.abc import x
    >>> from sympy.codegen.cfunctions import Cbrt
    >>> Cbrt(x)
    Cbrt(x)
    >>> Cbrt(x).diff(x)
    1/(3*x**(2/3))

    See Also
    ========

    Sqrt
    r   c                 C   s4   |dkr&t | jd tt d d S t| |dS )r   r   r   rO   NrX   r   r   r   r   r     s    z
Cbrt.fdiffc                 K   s
   t | j S r   )rZ   r   r   r   r   r   r     s    zCbrt._eval_expand_funcc                 K   s   t |S r   )rZ   r    r   r   r   rA     s    zCbrt._eval_rewrite_as_PowN)r   rY   r   r   r   r   r[     s   

r[   c                 C   s   t t| dt|d S )Nr=   )r	   r   )r   rK   r   r   r   _hypot  s    r\   c                   @   s2   e Zd ZdZdZdddZdd Zdd	 ZeZd
S )hypota  
    Represents the hypotenuse function.

    Explanation
    ===========

    The hypotenuse function is provided by e.g. the math library
    in the C99 standard, hence one may want to represent the function
    symbolically when doing code-generation.

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy.codegen.cfunctions import hypot
    >>> hypot(3, 4).evalf() == 5.0
    True
    >>> hypot(x, y)
    hypot(x, y)
    >>> hypot(x, y).diff(x)
    x/hypot(x, y)

    r=   r   c                 C   s8   |dv r*d| j |d   t| j| j    S t| |dS )r   rP   r=   r   N)r   r>   funcr   r   r   r   r   r     s    "zhypot.fdiffc                 K   s
   t | j S r   )r\   r   r   r   r   r   r     s    zhypot._eval_expand_funcc                 K   s   t |S r   )r\   r    r   r   r   rA     s    zhypot._eval_rewrite_as_PowN)r   rY   r   r   r   r   r]     s   

r]   c                   @   s   e Zd ZdZedd ZdS )isnanr   c                 C   s    |t ju rtS |jrtS d S d S r   )r   NaNr   r6   r   r7   r   r   r   r$     s
    
z
isnan.evalNr+   r,   r-   r/   r1   r$   r   r   r   r   r_     s   r_   c                   @   s   e Zd ZdZedd ZdS )isinfr   c                 C   s   |j r
tS |jrtS d S d S r   )is_infiniter   r)   r   r7   r   r   r   r$   '  s
    z
isinf.evalNra   r   r   r   r   rb   $  s   rb   N))r.   Zsympy.core.functionr   r   Zsympy.core.numbersr   Zsympy.core.powerr   Zsympy.core.singletonr   Z&sympy.functions.elementary.exponentialr   r   Z(sympy.functions.elementary.miscellaneousr	   Zsympy.logic.boolalgr
   r   r   r   r   r2   r3   r>   r?   r@   rB   rC   rM   rN   rR   rS   rT   rU   rV   rZ   r[   r\   r]   r_   rb   r   r   r   r   <module>   s:   =M4<)1./-