a
    h.                     @   s~   d Z ddlZddlmZ g dZedejddddd	Zedejdddd
dZedejdddddZ	dS )zTrophic levels    N)not_implemented_for)trophic_levelstrophic_differencestrophic_incoherence_parameterZ
undirectedweight)Z
edge_attrsc              
   C   s0  ddl }tj| |dj }|j|dd}||dk dd|dkf }|||dk dd|jf  }|jd }||}z|j	
|| }W n8 |j	jy }	 zd}
t|
|	W Y d}	~	n
d}	~	0 0 |jddd }i }dd | jD }|D ]}d||< qd	d | jD }t|D ]\}}|| ||< q|S )
a  Compute the trophic levels of nodes.

    The trophic level of a node $i$ is

    .. math::

        s_i = 1 + \frac{1}{k^{in}_i} \sum_{j} a_{ij} s_j

    where $k^{in}_i$ is the in-degree of i

    .. math::

        k^{in}_i = \sum_{j} a_{ij}

    and nodes with $k^{in}_i = 0$ have $s_i = 1$ by convention.

    These are calculated using the method outlined in Levine [1]_.

    Parameters
    ----------
    G : DiGraph
        A directed networkx graph

    Returns
    -------
    nodes : dict
        Dictionary of nodes with trophic level as the value.

    References
    ----------
    .. [1] Stephen Levine (1980) J. theor. Biol. 83, 195-207
    r   Nr      )ZaxiszTrophic levels are only defined for graphs where every node has a path from a basal node (basal nodes are nodes with no incoming edges).c                 s   s   | ]\}}|d kr|V  qdS r   N .0node_idZdegreer
   r
   T/var/www/auris/lib/python3.9/site-packages/networkx/algorithms/centrality/trophic.py	<genexpr>H       z!trophic_levels.<locals>.<genexpr>c                 s   s   | ]\}}|d kr|V  qdS r	   r
   r   r
   r
   r   r   M   r   )numpynxZadjacency_matrixTZtoarraysumZnewaxisshapeZeyeZlinalginvZLinAlgErrorZNetworkXErrorZ	in_degree	enumerate)Gr   npaZrowsumpnninerrmsgylevelsZzero_node_idsr   Znonzero_node_idsr
   r
   r   r      s,    #

"
r   c                 C   s<   t | |d}i }| jD ] \}}|| ||  |||f< q|S )as  Compute the trophic differences of the edges of a directed graph.

    The trophic difference $x_ij$ for each edge is defined in Johnson et al.
    [1]_ as:

    .. math::
        x_ij = s_j - s_i

    Where $s_i$ is the trophic level of node $i$.

    Parameters
    ----------
    G : DiGraph
        A directed networkx graph

    Returns
    -------
    diffs : dict
        Dictionary of edges with trophic differences as the value.

    References
    ----------
    .. [1] Samuel Johnson, Virginia Dominguez-Garcia, Luca Donetti, Miguel A.
        Munoz (2014) PNAS "Trophic coherence determines food-web stability"
    r   )r   edges)r   r   r"   diffsuvr
   r
   r   r   T   s
    r   Fc                 C   sb   ddl }|rt| |d}n6tt| }|r@|  }|| n| }t||d}|t| S )a+  Compute the trophic incoherence parameter of a graph.

    Trophic coherence is defined as the homogeneity of the distribution of
    trophic distances: the more similar, the more coherent. This is measured by
    the standard deviation of the trophic differences and referred to as the
    trophic incoherence parameter $q$ by [1].

    Parameters
    ----------
    G : DiGraph
        A directed networkx graph

    cannibalism: Boolean
        If set to False, self edges are not considered in the calculation

    Returns
    -------
    trophic_incoherence_parameter : float
        The trophic coherence of a graph

    References
    ----------
    .. [1] Samuel Johnson, Virginia Dominguez-Garcia, Luca Donetti, Miguel A.
        Munoz (2014) PNAS "Trophic coherence determines food-web stability"
    r   Nr   )	r   r   listr   Zselfloop_edgescopyZremove_edges_fromZstdvalues)r   r   Zcannibalismr   r$   Z
self_loopsZG_2r
   r
   r   r   w   s    r   )r   )r   )r   F)
__doc__Znetworkxr   Znetworkx.utilsr   __all__	_dispatchr   r   r   r
   r
   r
   r   <module>   s   
J
!
