a
    h+                     @   s.   d dl mZ d dlZdgZejdddZdS )	    )combinationsN
dispersionT      ?        c           	         s    fdd}|du r|du r^dd | D }| D ]&}| | D ]}|| |||| |< q@q4qt | | i }| | D ]}|| ||||< qvnD|du rt | | i }| | D ]}|| ||||< qn|| ||}|S )a  Calculate dispersion between `u` and `v` in `G`.

    A link between two actors (`u` and `v`) has a high dispersion when their
    mutual ties (`s` and `t`) are not well connected with each other.

    Parameters
    ----------
    G : graph
        A NetworkX graph.
    u : node, optional
        The source for the dispersion score (e.g. ego node of the network).
    v : node, optional
        The target of the dispersion score if specified.
    normalized : bool
        If True (default) normalize by the embeddedness of the nodes (u and v).
    alpha, b, c : float
        Parameters for the normalization procedure. When `normalized` is True,
        the dispersion value is normalized by::

            result = ((dispersion + b) ** alpha) / (embeddedness + c)

        as long as the denominator is nonzero.

    Returns
    -------
    nodes : dictionary
        If u (v) is specified, returns a dictionary of nodes with dispersion
        score for all "target" ("source") nodes. If neither u nor v is
        specified, returns a dictionary of dictionaries for all nodes 'u' in the
        graph with a dispersion score for each node 'v'.

    Notes
    -----
    This implementation follows Lars Backstrom and Jon Kleinberg [1]_. Typical
    usage would be to run dispersion on the ego network $G_u$ if $u$ were
    specified.  Running :func:`dispersion` with neither $u$ nor $v$ specified
    can take some time to complete.

    References
    ----------
    .. [1] Romantic Partnerships and the Dispersion of Social Ties:
        A Network Analysis of Relationship Status on Facebook.
        Lars Backstrom, Jon Kleinberg.
        https://arxiv.org/pdf/1310.6753v1.pdf

    c                    s   t | |   fdd| | D }||h}t|d}d}|D ]8\}} | | | }	||	vr<|	| | r<|d7 }q<t|}
|}r|  }|
 dkr||
  }|S )z=dispersion for all nodes 'v' in a ego network G_u of node 'u'c                    s   h | ]}| v r|qS  r   .0nZu_nbrsr   W/var/www/auris/lib/python3.9/site-packages/networkx/algorithms/centrality/dispersion.py	<setcomp><       z2dispersion.<locals>._dispersion.<locals>.<setcomp>   r      )setr   intersection
isdisjointlen)ZG_uuvZSTZset_uvZpossibtotalstZnbrs_sZembeddednessZdispersion_valalphabc
normalizedr
   r   _dispersion9   s"    

zdispersion.<locals>._dispersionNc                 S   s   i | ]
}|i qS r   r   r   r   r   r   
<dictcomp>X   r   zdispersion.<locals>.<dictcomp>)dictfromkeys)	Gr   r   r   r   r   r   r   resultsr   r   r   r      s     1)NNTr   r   r   )	itertoolsr   ZnetworkxZnx__all__	_dispatchr   r   r   r   r   <module>   s   