
    fTh                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zXGLM model configuration   )PretrainedConfig)loggingc                   j   ^  \ rS rSrSrSrS/rSSSS.r                  SU 4S	 jjrS
r	U =r
$ )
XGLMConfig   al  
This is the configuration class to store the configuration of a [`XGLMModel`]. It is used to instantiate an XGLM
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the XGLM
[facebook/xglm-564M](https://huggingface.co/facebook/xglm-564M) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    vocab_size (`int`, *optional*, defaults to 256008):
        Vocabulary size of the XGLM model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`XGLMModel`] or [`FlaxXGLMModel`].
    max_position_embeddings (`int`, *optional*, defaults to 2048):
        The maximum sequence length that this model might ever be used with. Typically set this to something large
        just in case (e.g., 512 or 1024 or 2048).
    d_model (`int`, *optional*, defaults to 1024):
        Dimension of the layers and the pooler layer.
    ffn_dim (`int`, *optional*, defaults to 4096):
        Dimension of the "intermediate" (often named feed-forward) layer in decoder.
    num_layers (`int`, *optional*, defaults to 24):
        Number of hidden layers Transformer decoder.
    attention_heads (`int`, *optional*, defaults to 16):
        Number of attention heads for each attention layer in the Transformer decoder.
    activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"silu"` and `"gelu_new"` are supported.
    dropout (`float`, *optional*, defaults to 0.1):
        The dropout probability for all fully connected layers in the embeddings, dencoder, and pooler.
    attention_dropout (`float`, *optional*, defaults to 0.1):
        The dropout ratio for the attention probabilities.
    activation_dropout (`float`, *optional*, defaults to 0.0):
        The dropout ratio for activations inside the fully connected layer.
    layerdrop (`float`, *optional*, defaults to 0.0):
        The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
        for more details.
    init_std (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    scale_embedding (`bool`, *optional*, defaults to `True`):
        Scale embeddings by diving by sqrt(d_model).
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models).

Example:

```python
>>> from transformers import XGLMModel, XGLMConfig

>>> # Initializing a XGLM facebook/xglm-564M style configuration
>>> configuration = XGLMConfig()

>>> # Initializing a model from the facebook/xglm-564M style configuration
>>> model = XGLMModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```xglmpast_key_valuesattention_headsd_model
num_layers)num_attention_headshidden_sizenum_hidden_layersc                    > Xl         X l        X0l        X@l        XPl        X`l        Xpl        Xl        Xl        Xl	        Xl
        Xl        Xl        Xl        [        TU ]<  " SUUUUS.UD6  g )N)pad_token_idbos_token_ideos_token_iddecoder_start_token_id )
vocab_sizemax_position_embeddingsr   ffn_dimr   r
   activation_functiondropoutattention_dropoutactivation_dropout	layerdropinit_stdscale_embedding	use_cachesuper__init__)selfr   r   r   r   r   r
   r   r   r   r   r   r   r   r    r   r   r   r   kwargs	__class__s                       c/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/xglm/configuration_xglm.pyr"   XGLMConfig.__init__]   sy    , %'>$$.#6 !2"4" ." 	
%%%#9		

 	
    )r   r   r   r
   r   r   r   r   r   r   r   r   r    r   )i i   i   i   r      gelu皙?r+           r,   g{Gz?TT          r-   )__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferenceattribute_mapr"   __static_attributes____classcell__)r%   s   @r&   r   r      sm    9v J#4"5  1 )M  $" '+
 +
r(   r   N)
r4   configuration_utilsr   utilsr   
get_loggerr0   loggerr   __all__r   r(   r&   <module>r?      s;     3  
		H	%p
! p
f .r(   