
    fTh                         S r SSKJr  SSKJr  SSKJr  SSKJr  SSK	J
r
  SSKJr  \R                  " \5      r " S	 S
\5      r " S S\
5      rS
S/rg)zViT model configuration    OrderedDict)Mapping)version   )PretrainedConfig)
OnnxConfig)loggingc                   T   ^  \ rS rSrSrSr                SU 4S jjrSrU =r$ )	ViTConfig   a  
This is the configuration class to store the configuration of a [`ViTModel`]. It is used to instantiate an ViT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the ViT
[google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.


Args:
    hidden_size (`int`, *optional*, defaults to 768):
        Dimensionality of the encoder layers and the pooler layer.
    num_hidden_layers (`int`, *optional*, defaults to 12):
        Number of hidden layers in the Transformer encoder.
    num_attention_heads (`int`, *optional*, defaults to 12):
        Number of attention heads for each attention layer in the Transformer encoder.
    intermediate_size (`int`, *optional*, defaults to 3072):
        Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
    hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
        The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
        `"relu"`, `"selu"` and `"gelu_new"` are supported.
    hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
    attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
        The dropout ratio for the attention probabilities.
    initializer_range (`float`, *optional*, defaults to 0.02):
        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
    layer_norm_eps (`float`, *optional*, defaults to 1e-12):
        The epsilon used by the layer normalization layers.
    image_size (`int`, *optional*, defaults to 224):
        The size (resolution) of each image.
    patch_size (`int`, *optional*, defaults to 16):
        The size (resolution) of each patch.
    num_channels (`int`, *optional*, defaults to 3):
        The number of input channels.
    qkv_bias (`bool`, *optional*, defaults to `True`):
        Whether to add a bias to the queries, keys and values.
    encoder_stride (`int`, *optional*, defaults to 16):
       Factor to increase the spatial resolution by in the decoder head for masked image modeling.
    pooler_output_size (`int`, *optional*):
       Dimensionality of the pooler layer. If None, defaults to `hidden_size`.
    pooler_act (`str`, *optional*, defaults to `"tanh"`):
       The activation function to be used by the pooler. Keys of ACT2FN are supported for Flax and
       Pytorch, and elements of https://www.tensorflow.org/api_docs/python/tf/keras/activations are
       supported for Tensorflow.

Example:

```python
>>> from transformers import ViTConfig, ViTModel

>>> # Initializing a ViT vit-base-patch16-224 style configuration
>>> configuration = ViTConfig()

>>> # Initializing a model (with random weights) from the vit-base-patch16-224 style configuration
>>> model = ViTModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config
```vitc                    > [         TU ]  " S0 UD6  Xl        X l        X0l        X@l        XPl        X`l        Xpl        Xl	        Xl
        Xl        Xl        Xl        Xl        Xl        U(       a  UOUU l        UU l        g )N )super__init__hidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_eps
image_size
patch_sizenum_channelsqkv_biasencoder_stridepooler_output_size
pooler_act)selfr   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   kwargs	__class__s                     a/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/vit/configuration_vit.pyr   ViTConfig.__init___   sz    ( 	"6"&!2#6 !2$#6 ,H)!2,$$( ,8J"4P[$    )r   r    r   r   r   r   r   r   r   r   r   r   r   r"   r!   r   )i      r)   i   gelu        r+   g{Gz?g-q=      r   Tr-   Ntanh)	__name__
__module____qualname____firstlineno____doc__
model_typer   __static_attributes____classcell__)r%   s   @r&   r   r      sL    <| J %(#%% %%r(   r   c                   |    \ rS rSr\R
                  " S5      r\S\\	\\
\	4   4   4S j5       r\S\4S j5       rSrg)ViTOnnxConfig   z1.11returnc                 (    [        SSSSSS.4/5      $ )Npixel_valuesbatchr   heightwidth)r         r   r   r#   s    r&   inputsViTOnnxConfig.inputs   s&    WHQX!YZ
 	
r(   c                     g)Ng-C6?r   rB   s    r&   atol_for_validation!ViTOnnxConfig.atol_for_validation   s    r(   r   N)r/   r0   r1   r2   r   parsetorch_onnx_minimum_versionpropertyr   strintrC   floatrF   r5   r   r(   r&   r8   r8      sX    !(v!6
WS#X%6 67 
 
 U  r(   r8   N)r3   collectionsr   typingr   	packagingr   configuration_utilsr   onnxr	   utilsr
   
get_loggerr/   loggerr   r8   __all__r   r(   r&   <module>rW      sV     #   3   
		H	%f%  f%RJ   
(r(   