
    fTh                     `    S r SSKJr  SSKJr  \R
                  " \5      r " S S\5      rS/r	g)zUDOP model configuration   )PretrainedConfig)loggingc                      ^  \ rS rSrSrSrS/rSSSS.rS	S
SSSSSSSSS0SS0SS0/SSSSSSSSS
SSS4U 4S jjrSr	U =r
$ ) 
UdopConfig   a  
This is the configuration class to store the configuration of a [`UdopForConditionalGeneration`]. It is used to
instantiate a UDOP model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the UDOP
[microsoft/udop-large](https://huggingface.co/microsoft/udop-large) architecture.

Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.

Arguments:
    vocab_size (`int`, *optional*, defaults to 33201):
        Vocabulary size of the UDOP model. Defines the number of different tokens that can be represented by the
        `inputs_ids` passed when calling [`UdopForConditionalGeneration`].
    d_model (`int`, *optional*, defaults to 1024):
        Size of the encoder layers and the pooler layer.
    d_kv (`int`, *optional*, defaults to 64):
        Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will
        be defined as `num_heads * d_kv`.
    d_ff (`int`, *optional*, defaults to 4096):
        Size of the intermediate feed forward layer in each `UdopBlock`.
    num_layers (`int`, *optional*, defaults to 24):
        Number of hidden layers in the Transformer encoder and decoder.
    num_decoder_layers (`int`, *optional*):
        Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
    num_heads (`int`, *optional*, defaults to 16):
        Number of attention heads for each attention layer in the Transformer encoder and decoder.
    relative_attention_num_buckets (`int`, *optional*, defaults to 32):
        The number of buckets to use for each attention layer.
    relative_attention_max_distance (`int`, *optional*, defaults to 128):
        The maximum distance of the longer sequences for the bucket separation.
    relative_bias_args (`List[dict]`, *optional*, defaults to `[{'type': '1d'}, {'type': 'horizontal'}, {'type': 'vertical'}]`):
        A list of dictionaries containing the arguments for the relative bias layers.
    dropout_rate (`float`, *optional*, defaults to 0.1):
        The ratio for all dropout layers.
    layer_norm_epsilon (`float`, *optional*, defaults to 1e-06):
        The epsilon used by the layer normalization layers.
    initializer_factor (`float`, *optional*, defaults to 1.0):
        A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
        testing).
    feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
        Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. Udopv1.1 uses the
        `"gated-gelu"` feed forward projection. Original Udop uses `"relu"`.
    is_encoder_decoder (`bool`, *optional*, defaults to `True`):
        Whether the model should behave as an encoder/decoder or not.
    use_cache (`bool`, *optional*, defaults to `True`):
        Whether or not the model should return the last key/values attentions (not used by all models).
    pad_token_id (`int`, *optional*, defaults to 0):
        The id of the padding token in the vocabulary.
    eos_token_id (`int`, *optional*, defaults to 1):
        The id of the end-of-sequence token in the vocabulary.
    max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
        The maximum absolute position embeddings for relative position encoding.
    image_size (`int`, *optional*, defaults to 224):
        The size of the input images.
    patch_size (`int`, *optional*, defaults to 16):
        The patch size used by the vision encoder.
    num_channels (`int`, *optional*, defaults to 3):
        The number of channels in the input images.
udoppast_key_valuesd_model	num_heads
num_layers)hidden_sizenum_attention_headsnum_hidden_layersi  i   @   i   N          type1d
horizontalverticalg?gư>g      ?reluT          r   c                 L  > Xl         X l        X0l        X@l        XPl        Ub  UOU R                  U l        Xpl        Xl        Xl        Xl	        Xl
        Xl        Xl        UU l        UU l        UU l        UU l        UU l        [%        U
[&        5      (       d  [)        S5      eXl        U R                  R-                  S5      nUS   U l        US   S:H  U l        [3        U5      S:  a	  US   S:w  d  [3        U5      S:  a  [5        SU S	35      e[6        TU ]p  " SUUUS
.UD6  g )Nz6`relative_bias_args` should be a list of dictionaries.-r   gatedr      z`feed_forward_proj`: z is not a valid activation function of the dense layer.Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. 'gated-gelu' or 'relu')pad_token_ideos_token_idis_encoder_decoder )
vocab_sizer
   d_kvd_ffr   num_decoder_layersr   relative_attention_num_bucketsrelative_attention_max_distancedropout_ratelayer_norm_epsiloninitializer_factorfeed_forward_proj	use_cachemax_2d_position_embeddings
image_size
patch_sizenum_channels
isinstancelist	TypeErrorrelative_bias_argssplitdense_act_fnis_gated_actlen
ValueErrorsuper__init__)selfr%   r
   r&   r'   r   r(   r   r)   r*   r7   r+   r,   r-   r.   r#   r/   r!   r"   r0   r1   r2   r3   kwargsact_info	__class__s                            c/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/udop/configuration_udop.pyr>   UdopConfig.__init__Y   sD   4 %		$"4"@doo 	 #.L+/N,("4"4!2" +E'$$(,d33TUU"4))//4$RL$QK72x=1!!73x=1;L'(9': ;) )  	 	
%%1	
 		
    )r'   r&   r
   r9   r+   r.   r1   r-   r:   r,   r0   r3   r(   r   r   r2   r*   r)   r7   r/   r%   )__name__
__module____qualname____firstlineno____doc__
model_typekeys_to_ignore_at_inferenceattribute_mapr>   __static_attributes____classcell__)rB   s   @rC   r   r      s    :x J#4"5$-khtuM ')(+#TNV\,BVZDXY #'/D
 D
rE   r   N)
rJ   configuration_utilsr   utilsr   
get_loggerrF   loggerr   __all__r$   rE   rC   <module>rU      s;     3  
		H	%E
! E
P .rE   