
    fThw                        S SK JrJrJrJrJr  S SKrS SKJr  SSKJ	r	  SSK
JrJrJrJr  SSKJr  SSKJr  SS	KJr  SS
KJr  SSKJrJrJrJr  SSKJrJr  SSKJ r J!r!  SSK"J#r#  SSK$J%r%J&r&J'r'J(r(J)r)  SSK*J+r+  \(" 5       (       a  S SK,J-r-  SSK.J/r/  \)R`                  " \15      r2 " S S\Rf                  5      r4S r5S9S jr6S\Rn                  S\8S\Rn                  4S jr9 S:S\Rf                  S\Rn                  S\Rn                  S\Rn                  S \\Rn                     S!\:S"\:4S# jjr; " S$ S%\Rf                  5      r< " S& S'\5      r= " S( S)\Rf                  5      r>\& " S* S+\!5      5       r?\& " S, S-\?5      5       r@ " S. S/\\%5      rA\& " S0 S1\?\5      5       rB\&" S2S39 " S4 S5\?5      5       rC\& " S6 S7\?5      5       rD/ S8QrEg);    )CallableListOptionalTupleUnionN)nn   )ACT2FN)CacheDynamicCacheSlidingWindowCacheStaticCache)GenerationMixin)AttentionMaskConverter)FlashAttentionKwargs)GradientCheckpointingLayer)BaseModelOutputWithPastCausalLMOutputWithPast SequenceClassifierOutputWithPastTokenClassifierOutput)ROPE_INIT_FUNCTIONSdynamic_rope_update)ALL_ATTENTION_FUNCTIONSPreTrainedModel)Unpack)
LossKwargsauto_docstringcan_return_tupleis_torch_flex_attn_availablelogging   )Starcoder2Config)	BlockMask)make_flex_block_causal_maskc                   v   ^  \ rS rSrS\4U 4S jjrS\\\R                        S\R                  4S jr
SrU =r$ )Starcoder2MLP<   configc                 D  > [         TU ]  5         UR                  n[        R                  " X!R
                  UR                  S9U l        [        R                  " UR
                  X!R                  S9U l        [        UR                     U l        UR                  U l        g )Nbias)super__init__hidden_sizer   Linearintermediate_sizeuse_biasc_fcc_projr
   
hidden_actactresidual_dropout)selfr(   	embed_dim	__class__s      j/var/www/auris/envauris/lib/python3.13/site-packages/transformers/models/starcoder2/modeling_starcoder2.pyr-   Starcoder2MLP.__init__=   sq    &&	IIi)A)AX	ii 8 8)//Z&++, & 7 7    hidden_statesreturnc                     U R                  U5      nU R                  U5      nU R                  U5      n[        R                  R                  XR                  U R                  S9nU$ )Nptraining)r2   r5   r3   r   
functionaldropoutr6   rB   )r7   r=   s     r:   forwardStarcoder2MLP.forwardE   sX    		-0/M2--m?T?T_c_l_l-mr<   )r5   r2   r3   r6   )__name__
__module____qualname____firstlineno__r"   r-   r   r   torchFloatTensorrE   __static_attributes____classcell__r9   s   @r:   r&   r&   <   s>    8/ 8XeE4E4E.F%G EL]L]  r<   r&   c                     U SSU R                   S   S-  24   nU SU R                   S   S-  S24   n[        R                  " U* U4SS9$ )z*Rotates half the hidden dims of the input..N   dim)shaperK   cat)xx1x2s      r:   rotate_halfrZ   M   sZ    	
3"!''"+"""	#B	
3q ""	#B99rc2YB''r<   c                     UR                  U5      nUR                  U5      nX-  [        U 5      U-  -   nX-  [        U5      U-  -   nXg4$ )a  Applies Rotary Position Embedding to the query and key tensors.

Args:
    q (`torch.Tensor`): The query tensor.
    k (`torch.Tensor`): The key tensor.
    cos (`torch.Tensor`): The cosine part of the rotary embedding.
    sin (`torch.Tensor`): The sine part of the rotary embedding.
    position_ids (`torch.Tensor`, *optional*):
        Deprecated and unused.
    unsqueeze_dim (`int`, *optional*, defaults to 1):
        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
)	unsqueezerZ   )qkcossinposition_idsunsqueeze_dimq_embedk_embeds           r:   apply_rotary_pos_embre   T   sS    ( --
&C
--
&Cw;q>C/0Gw;q>C/0Gr<   r=   n_repr>   c                     U R                   u  p#pEUS:X  a  U $ U SS2SS2SSS2SS24   R                  X#XU5      n U R                  X#U-  XE5      $ )z
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
r!   N)rU   expandreshape)r=   rf   batchnum_key_value_headsslenhead_dims         r:   	repeat_kvrn   o   s_    
 2?1D1D.Ez!!Qa"23::5W\dlmM  e(CTTTr<   modulequerykeyvalueattention_maskscalingrD   c                 @   [        X R                  5      n[        X0R                  5      n	[        R                  " XR	                  SS5      5      U-  n
Ub"  US S 2S S 2S S 2S UR
                  S   24   nX-   n
[        R                  R                  U
S[        R                  S9R                  UR                  5      n
[        R                  R                  XU R                  S9n
[        R                  " X5      nUR	                  SS5      R                  5       nX4$ )NrR   r	   rQ   )rT   dtyper@   r!   )rn   num_key_value_groupsrK   matmul	transposerU   r   rC   softmaxfloat32torw   rD   rB   
contiguous)ro   rp   rq   rr   rs   rt   rD   kwargs
key_statesvalue_statesattn_weightscausal_maskattn_outputs                r:   eager_attention_forwardr   {   s     3 ; ;<JU$?$?@L<<';';Aq'ABWLL!$Q1.D
0@0@0D.D%DE#1==((2U]](SVVW\WbWbcL==((6??([L,,|:K''1-88:K$$r<   c                   P  ^  \ rS rSrSrSS\S\\   4U 4S jjjr  SS\	R                  S\\	R                  \	R                  4   S\\	R                     S	\\   S
\\	R                     S\\   S\\	R                  \\	R                     \\\	R                        4   4S jjrSrU =r$ )Starcoder2Attention   z=Multi-headed attention from 'Attention Is All You Need' paperr(   	layer_idxc                   > [         TU ]  5         Xl        X l        [	        USS 5      =(       d    UR
                  UR                  -  U l        UR                  UR                  -  U l	        U R                  S-  U l
        UR                  U l        SU l        [        R                  " UR
                  UR                  U R                  -  UR                  S9U l        [        R                  " UR
                  UR                  U R                  -  UR                  S9U l        [        R                  " UR
                  UR                  U R                  -  UR                  S9U l        [        R                  " UR                  U R                  -  UR
                  UR                  S9U l        UR(                  U l        g )Nrm   g      Tr*   )r,   r-   r(   r   getattrr.   num_attention_headsrm   rk   rx   rt   attention_dropout	is_causalr   r/   r1   q_projk_projv_projo_projr6   r7   r(   r   r9   s      r:   r-   Starcoder2Attention.__init__   sT   "
D9mV=O=OSYSmSm=m$*$>$>&B\B\$\!}}d*!'!9!9ii 2 2F4N4NQUQ^Q^4^eketetuii 2 2F4N4NQUQ^Q^4^eketetuii 2 2F4N4NQUQ^Q^4^eketetuii : :T]] JFL^L^eketetu & 7 7r<   r=   position_embeddingsrs   past_key_valuecache_positionr   r>   c           
      T   UR                   S S n/ UQSPU R                  P7nU R                  U5      R                  U5      R	                  SS5      n	U R                  U5      R                  U5      R	                  SS5      n
U R                  U5      R                  U5      R	                  SS5      nUu  p[        XX5      u  pUb$  XUS.nUR                  XU R                  U5      u  p[        nU R                  R                  S:w  ad  U R                  R                  S:X  a-  UR                  SS5      (       a  [        R                  S	5        O[         U R                  R                     nU" U U	U
UU4U R"                  (       d  S
OU R$                  U R&                  [)        U R                  SS 5      S.UD6u  nnUR*                  " / UQSP76 R-                  5       nU R/                  U5      n[0        R2                  R5                  UU R6                  U R"                  S9nUU4$ )NrQ   r!   rR   )r`   r_   r   eagersdpaoutput_attentionsFz`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.        sliding_window)rD   rt   r   r@   )rU   rm   r   viewrz   r   r   re   updater   r   r(   _attn_implementationgetloggerwarning_oncer   rB   r   rt   r   ri   r~   r   r   rC   rD   r6   )r7   r=   r   rs   r   r   r   input_shapehidden_shapequery_statesr   r   r_   r`   cache_kwargsattention_interfacer   r   s                     r:   rE   Starcoder2Attention.forward   s    $))#2.88b8$--8{{=166|DNNqRST[[/44\BLLQPQR
{{=166|DNNqRST&#7RU#[ %#&nUL'5'<'<ZW[WeWegs't$J(?;;++w6{{//69fjjI\^c>d>d##L
 '>dkk>^>^&_#$7
%
  $}}C$2H2HLL"4;;0@$G
%
 
%
!\ "));;;;FFHkk+.mm++4004== , 
 L((r<   )r   r(   rm   r   r   r   rx   r   r   r6   rt   r   N)NN)rG   rH   rI   rJ   __doc__r"   r   intr-   rK   Tensorr   r   
LongTensorr   r   rE   rM   rN   rO   s   @r:   r   r      s    G8/ 8HSM 8 8( +/594)||4) #5<<#=>4) !.	4)
 !4) !!1!124) -.4) 
u||Xell3XeELL>Q5RR	S4) 4)r<   r   c                     ^  \ rS rSrS\S\4U 4S jjr       SS\R                  S\	\R                     S\	\R                     S\	\   S	\	\   S
\	\   S\	\R                     S\	\\R                  \R                  4      S\\   S\\R                   \	\\R                   \R                   4      4   4S jjrSrU =r$ )Starcoder2DecoderLayer   r(   r   c                 8  > [         TU ]  5         UR                  U l        [        XS9U l        [        U5      U l        [        R                  " UR                  UR                  S9U l
        [        R                  " UR                  UR                  S9U l        g )N)r(   r   eps)r,   r-   r.   r   	self_attnr&   mlpr   	LayerNormnorm_epsiloninput_layernormpost_attention_layernormr   s      r:   r-   Starcoder2DecoderLayer.__init__   sr    !--,FP (!||F,>,>FDWDWX(*V5G5GVM`M`(a%r<   r=   rs   ra   r   r   	use_cacher   r   r   r>   c	                     Un
U R                  U5      nU R                  " SUUUUUUUUS.U	D6u  pX-   nUn
U R                  U5      nU R                  U5      nX-   nU4nU(       a  X4-  nU$ )N)r=   rs   ra   r   r   r   r   r    )r   r   r   r   )r7   r=   rs   ra   r   r   r   r   r   r   residualself_attn_weightsoutputss                r:   rE   Starcoder2DecoderLayer.forward   s     !,,]; ,0>> 
,
')%)/) 3
,
 
,
( !0 !55mD/ 0 "++Gr<   )r.   r   r   r   r   )NNNFFNN)rG   rH   rI   rJ   r"   r   r-   rK   r   r   r   r   boolr   r   r   rL   rE   rM   rN   rO   s   @r:   r   r      s   b/ bC b 2637*.,1$)59KO'||' !.' u//0	'
 !' $D>' D>' !!1!12' &eELL%,,,F&GH' -.' 
u  (51B1BEDUDU1U+V"WW	X' 'r<   r   c                   l   ^  \ rS rSrSS\4U 4S jjjr\R                  " 5       \S 5       5       r	Sr
U =r$ )Starcoder2RotaryEmbeddingi  r(   c                   > [         TU ]  5         [        US5      (       aH  UR                  b;  UR                  R	                  SUR                  R	                  S5      5      U l        OSU l        UR                  U l        UR                  U l        Xl	        [        U R
                     U l        U R                  U R                  U5      u  o0l        U R                  SUSS9  U R                  U l        g )Nrope_scaling	rope_typetypedefaultinv_freqF)
persistent)r,   r-   hasattrr   r   r   max_position_embeddingsmax_seq_len_cachedoriginal_max_seq_lenr(   r   rope_init_fnattention_scalingregister_bufferr   original_inv_freq)r7   r(   devicer   r9   s       r:   r-   "Starcoder2RotaryEmbedding.__init__  s    6>**v/B/B/N#0044[&BUBUBYBYZ`BabDN&DN"("@"@$*$B$B!/?+/+<+<T[[&+Q((ZeD!%r<   c                 b   U R                   S S S 2S 4   R                  5       R                  UR                  S   SS5      R	                  UR
                  5      nUS S 2S S S 24   R                  5       n[        UR
                  R                  [        5      (       a0  UR
                  R                  S:w  a  UR
                  R                  OSn[        R                  " USS9   UR                  5       UR                  5       -  R                  SS5      n[        R                  " Xf4SS	9nUR                  5       U R                  -  nUR                  5       U R                  -  n	S S S 5        WR	                  UR                   S
9W	R	                  UR                   S
94$ ! , (       d  f       N@= f)Nr   rQ   r!   mpscpuF)device_typeenabledrR   rS   )rw   )r   floatrh   rU   r}   r   
isinstancer   strrK   autocastrz   rV   r_   r   r`   rw   )
r7   rW   ra   inv_freq_expandedposition_ids_expandedr   freqsembr_   r`   s
             r:   rE   !Starcoder2RotaryEmbedding.forward#  sR    !MM$4-8>>@GGHZHZ[\H]_acdehhijiqiqr ,QaZ 8 > > @'1!((--'E'E!((--[`J`ahhmmfk^^UC&,,.1F1L1L1NNYYZ[]^_E))UN3C'')d444C'')d444C	 D vvAGGv$cff177f&;;; DCs   $BF  
F.)r   r(   r   r   r   r   r   r   )rG   rH   rI   rJ   r"   r-   rK   no_gradr   rE   rM   rN   rO   s   @r:   r   r     s7    // / /" ]]_<  <r<   r   c                   N    \ rS rSr\rSrSrS/rS/r	Sr
SrSrSrSrSrSrS rSrg)	Starcoder2PreTrainedModeli3  modelTr   past_key_valuesc                    U R                   R                  n[        U[        R                  5      (       aW  UR
                  R                  R                  SUS9  UR                  b%  UR                  R                  R                  5         g g [        U[        R                  5      (       ad  UR
                  R                  R                  SUS9  UR                  b2  UR
                  R                  UR                     R                  5         g g [        U[        R                  5      (       aJ  UR
                  R                  R                  S5        UR                  R                  R                  5         g g )Nr   )meanstdg      ?)r(   initializer_ranger   r   r/   weightdatanormal_r+   zero_	Embeddingpadding_idxr   fill_)r7   ro   r   s      r:   _init_weights'Starcoder2PreTrainedModel._init_weightsB  s   kk++fbii((MM&&CS&9{{&  &&( '--MM&&CS&9!!-""6#5#56<<> .--MM$$S)KK""$ .r<   r   N)rG   rH   rI   rJ   r"   config_classbase_model_prefixsupports_gradient_checkpointing_no_split_modules_skip_keys_device_placement_supports_flash_attn_2_supports_sdpa_supports_flex_attn_supports_cache_class_supports_quantized_cache_supports_static_cache_supports_attention_backendr   rM   r   r<   r:   r   r   3  sS    #L&*#12#4"5!N  $!"&%r<   r   c                   :  ^  \ rS rSrS\4U 4S jjrS rS r\\	         SS\
\R                     S\
\R                     S\
\R                     S	\
\\\\R"                     4      S
\
\R"                     S\
\   S\
\   S\
\   S\
\R                     S\\   S\4S jj5       5       r SS\\R                  S4   S\R                  S\R                  S	\S\4
S jjr\S\R                  S\S\S\R4                  S\R                  S\S\S	\4S j5       rSrU =r$ )Starcoder2ModeliQ  r(   c           	      @  > [         TU ]  U5        UR                  U l        UR                  U l        [
        R                  " UR                  UR                  U R                  5      U l        [
        R                  " [        UR                  5       Vs/ s H  n[        X5      PM     sn5      U l        [
        R                  " UR                  UR                  S9U l        [#        US9U l        SU l        UR(                  U l        U R+                  5         g s  snf )Nr   )r(   F)r,   r-   pad_token_idr   
vocab_sizer   r   r.   embed_tokens
ModuleListrangenum_hidden_layersr   layersr   r   normr   
rotary_embgradient_checkpointingembedding_dropout	post_initr   s      r:   r-   Starcoder2Model.__init__S  s     !.. ++LL):):F<N<NPTP`P`ammHMfNfNfHghHg9#F6Hgh
 LL!3!39L9LM	36B&+#!'!9!9 	 is   Dc                     U R                   $ r   r  r7   s    r:   get_input_embeddings$Starcoder2Model.get_input_embeddingsd  s       r<   c                     Xl         g r   r  r7   rr   s     r:   set_input_embeddings$Starcoder2Model.set_input_embeddingsg  s    !r<   	input_idsrs   ra   r   inputs_embedsr   r   output_hidden_statesr   flash_attn_kwargsr>   c
                 X   Ub  UOU R                   R                  nUb  UOU R                   R                  nUb  UOU R                   R                  nUS L US L-  (       a  [	        S5      eU R
                  (       a/  U R                  (       a  U(       a  [        R                  S5        SnUc  U R                  U5      nU(       a  Uc
  [        5       nU	cD  Ub  UR                  5       OSn[        R                  " XUR                  S   -   UR                  S9n	Uc  U	R!                  S5      nU R#                  X%XU5      nUn[$        R&                  R)                  XR*                  U R                  S9nU R-                  X5      nU(       a  SOS nU(       a  SOS nU R.                  S U R                   R0                    H7  nU(       a  X4-  nU" U4UUUUUU	US	.U
D6nUS   nU(       d  M.  UUS   4-  nM9     U R3                  U5      nU(       a  X4-  n[5        UU(       a  UOS UUS
9$ )Nz:You must specify exactly one of input_ids or inputs_embedszX`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.Fr   r!   r   r@   r   )rs   ra   r   r   r   r   r   )last_hidden_stater   r=   
attentions)r(   r   r  r   
ValueErrorr  rB   r   r   r  r   get_seq_lengthrK   arangerU   r   r\   _update_causal_maskr   rC   rD   r  r  r  r  r  r   )r7   r  rs   ra   r   r  r   r   r  r   r  past_seen_tokensr   r=   r   all_hidden_statesall_self_attnsdecoder_layerlayer_outputss                      r:   rE   Starcoder2Model.forwardj  sM    2C1N-TXT_T_TqTq$8$D $++JjJj 	 "+!6IDKK<Q<Q	-t";<YZZ&&4==Yj I  --i8M0*nO!CRC^==?de"\\ ]5H5H5K"KTaThThN )33A6L..>L]
 &--33dmm . 

 #oomJ #7BD0d![[)H4;;+H+HIM#!%55!)
*)."3#-$7
 $
M *!,M  =#3"55' J* 		-0  !11&+/8Od+%	
 	
r<   r#   input_tensorc                    U R                   R                  S:X  a]  UbN  UbK  US S 2S4   R                  5       R                  5       UR	                  5       S   :g  nU(       a  [        S5      eUb  SU;   a  U$ g U R                   R                  S:X  a,  [        U[        R                  5      (       a  [        U5      nU$ Ub  UR                  5       OSn[        U[        5      n[        U[        5      n	U R                   R                  S:X  aQ  U(       dJ  U	(       dC  U(       d<  [        R                  " UUUU R                   R                  U R                   S9(       a  g UR"                  n
[        R$                  " U
5      R&                  nUR(                  S	   nU	(       d  U(       a  UR+                  5       nO5[        U[        R                  5      (       a  UR(                  S   OX|-   S	-   nU R-                  UUUU
UUR(                  S   U R                   US
9nU R                   R                  S:X  a:  Ub7  UR.                  R0                  S;   a  U(       d  [        R2                  " X5      nU$ )Nflash_attention_2rQ   r   zYou are attempting to perform batched generation with padding_side='right' this may lead to unexpected behaviour for Flash Attention version of Starcoder2. Make sure to  call `tokenizer.padding_side  = 'left'` before tokenizing the input. r   flex_attentionr   )r  past_key_values_lengthr   is_trainingr!   )sequence_lengthtarget_lengthrw   r   
batch_sizer(   r   )cudaxpunpu)r(   r   sumitemsizer$  r   rK   r   r$   r%  r   r   r   _ignore_causal_mask_sdpar   rB   rw   finfominrU   get_max_cache_shape5_prepare_4d_causal_attention_mask_with_cache_positionr   r   _unmask_unattended)r7   rs   r.  r   r   r   is_padding_rightr(  using_static_cacheusing_sliding_window_cacherw   	min_dtyper4  r5  r   s                  r:   r'  #Starcoder2Model._update_causal_mask  s;    ;;++/BB)o.I#1!R%#8#<#<#>#C#C#EIZIZI\]^I_#_ #$a 
 )c^.C%%;;++/??.%,,77!<^!L!!
 @O?Z?99;`a'E%/AS%T" KK,,6'+E%%>>*'7#{{99 MM ""KK&**	&,,Q/%);+??AM
 nell;; $$R(%7!;  PP+')#))!,;;+ Q 	
 KK,,6*%%**.DD%
 1CCK[Kr<   r4  r5  rw   r6  c                    U b  U R                  5       S:X  a  U nU$ [        R                  " U5      R                  n	[        R                  " X4XUR
                  S9n[        R                  " X$R
                  S9UR                  SS5      :  n
UR                  5       n[        USS5      (       av  UR                  bi  [        U[        5      (       a  X:  aO  [        R                  " X$R
                  S9UR                  SS5      UR                  -
  :*  nU
R                  U5        X-  nUSSSS2SS24   R                  USSS5      nU b  UR                  5       nU R                   S   U:  a  U SS2SU24   n U R                   S   nUSS2SS2SS2SU24   U SS2SSSS24   R#                  UR
                  5      -   nUS	:H  nUSS2SS2SS2SU24   R%                  X5      USS2SS2SS2SU24'   U$ )
aV  
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

Args:
    attention_mask (`torch.Tensor`):
        A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
    sequence_length (`int`):
        The sequence length being processed.
    target_length (`int`):
        The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
    dtype (`torch.dtype`):
        The dtype to use for the 4D attention mask.
    cache_position (`torch.Tensor`):
        Indices depicting the position of the input sequence tokens in the sequence.
    batch_size (`torch.Tensor`):
        Batch size.
    config (`Starcoder2Config`):
        The model's configuration class
    past_key_values (`Cache`):
        The cache class that is being used currently to generate
N   )
fill_valuerw   r   r!  rQ   r!   use_sliding_windowTr   )rT   rK   r>  r?  fullr   r&  ri   get_text_configr   r   r   r   bitwise_or_rh   clonerU   r}   masked_fill)rs   r4  r5  rw   r   r6  r(   r   r   rF  diagonal_attend_masktext_configsliding_attend_maskmask_lengthpadding_masks                  r:   rA  EStarcoder2Model._prepare_4d_causal_attention_mask_with_cache_position  s   B %.*<*<*>!*C(K@ = E*..I** 0Y\j\q\qK $)<<F[F[#\_m_u_uA` $  !002K{$8$??KD^D^Dj "/3EFF/Ji*/,,}MbMb*c&..r158R8RR+' )445HI/K%dD!Q&67>>z1bRTUK))//1!''+m;%3A~~4E%FN,2226*1aL[L+@ANSTVZ\`bcScDdDgDg&&E    ,q05@Aq,;,AV5W5c5c 6Aq!\k\12 r<   )r  r  r  r  r  r   r  r  	NNNNNNNNN)F)rG   rH   rI   rJ   r"   r-   r  r  r   r   r   rK   r   r   r   r   r   rL   r   r   r   r   rE   r'  staticmethodr   rw   rA  rM   rN   rO   s   @r:   r  r  Q  s   / "!"  151537KO59$(,0/359[
E,,-[
 !.[
 u//0	[

 "%tE4E4E/F(F"GH[
   1 12[
 D>[
 $D>[
 'tn[
 !!1!12[
 $$89[
 
![
  [
F #(TellK78T llT 	T
 T  Tl BBB B {{	B
 B B !B B Br<   r  c                       \ rS rSrSrg)KwargsForCausalLMie  r   N)rG   rH   rI   rJ   rM   r   r<   r:   rZ  rZ  e  s    3r<   rZ  c                     ^  \ rS rSrS/rSS0rSS/S/40rU 4S jrS rS	 r	S
 r
S rS rS r\\           SS\\R$                     S\\R&                     S\\R$                     S\\   S\\R*                     S\\R$                     S\\   S\\   S\\   S\\R$                     S\\\R&                  4   S\\   S\4S jj5       5       rSrU =r$ )Starcoder2ForCausalLMih  zlm_head.weightlm_headcolwise_repr=   logitsc                    > [         TU ]  U5        [        U5      U l        UR                  U l        [
        R                  " UR                  UR                  SS9U l        U R                  5         g NFr*   )
r,   r-   r  r   r  r   r/   r.   r]  r  r7   r(   r9   s     r:   r-   Starcoder2ForCausalLM.__init__n  sU     $V,
 ++yy!3!3V5F5FUS 	r<   c                 .    U R                   R                  $ r   r   r  r  s    r:   r  *Starcoder2ForCausalLM.get_input_embeddingsw      zz&&&r<   c                 $    XR                   l        g r   re  r  s     r:   r  *Starcoder2ForCausalLM.set_input_embeddingsz      "'

r<   c                     U R                   $ r   r]  r  s    r:   get_output_embeddings+Starcoder2ForCausalLM.get_output_embeddings}  s    ||r<   c                     Xl         g r   rl  )r7   new_embeddingss     r:   set_output_embeddings+Starcoder2ForCausalLM.set_output_embeddings  s    %r<   c                     Xl         g r   r   )r7   decoders     r:   set_decoder!Starcoder2ForCausalLM.set_decoder  s    
r<   c                     U R                   $ r   rt  r  s    r:   get_decoder!Starcoder2ForCausalLM.get_decoder  s    zzr<   r  rs   ra   r   r  labelsr   r   r  r   logits_to_keepr   r>   c                    Ub  UOU R                   R                  nU	b  U	OU R                   R                  n	U R                  " SUUUUUUUU	U
S.	UD6nUR                  n[        U[        5      (       a  [        U* S5      OUnU R                  USS2USS24   5      nSnUb)  U R                  " SUX`R                   R                  S.UD6n[        UUUR                  UR                  UR                  S9$ )a  
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
    Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
    config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
    (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

Example:

```python
>>> from transformers import AutoTokenizer, Starcoder2ForCausalLM

>>> model = Starcoder2ForCausalLM.from_pretrained("meta-starcoder2/Starcoder2-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-starcoder2/Starcoder2-2-7b-hf")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```N)	r  rs   ra   r   r  r   r   r  r   )r_  r{  r  lossr_  r   r=   r#  r   )r(   r   r  r   r"  r   r   slicer]  loss_functionr  r   r   r=   r#  )r7   r  rs   ra   r   r  r{  r   r   r  r   r|  r   r   r=   slice_indicesr_  r  s                     r:   rE   Starcoder2ForCausalLM.forward  s   N 2C1N-TXT_T_TqTq$8$D $++JjJj 	
 ,0:: ,
)%+'/!5),
 ,
  118B>SV8W8W~ot4]kmA}a,?@A%%pVF{{OeOepiopD%#33!//))
 	
r<   )r]  r   r  )NNNNNNNNNNr   )rG   rH   rI   rJ   _tied_weights_keys_tp_plan_pp_planr-   r  r  rm  rq  rv  ry  r   r   r   rK   r   r   r   rL   r   r   r   r   rZ  r   rE   rM   rN   rO   s   @r:   r\  r\  h  s   *+=)H_-z:;H'(&  151537+/59-1$(,0/35934G
E,,-G
 !.G
 u//0	G

 "%G
   1 12G
 ))*G
 D>G
 $D>G
 'tnG
 !!1!12G
 c5<</0G
 *+G
 
 G
  G
r<   r\  a  
    The Starcoder2 Model transformer with a sequence classification head on top (linear layer).

    [`Starcoder2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
    (e.g. GPT-2) do.

    Since it does classification on the last token, it requires to know the position of the last token. If a
    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
    each row of the batch).
    )custom_introc                   *  ^  \ rS rSrU 4S jrS rS r\\         SS\	\
R                     S\	\
R                     S\	\
R                     S\	\   S	\	\
R                     S
\	\
R                     S\	\   S\	\   S\	\   S\4S jj5       5       rSrU =r$ )#Starcoder2ForSequenceClassificationi  c                    > [         TU ]  U5        UR                  U l        [        U5      U l        [
        R                  " UR                  U R                  SS9U l        U R                  5         g ra  )
r,   r-   
num_labelsr  r   r   r/   r.   scorer  rb  s     r:   r-   ,Starcoder2ForSequenceClassification.__init__  sS      ++$V,
YYv114??O
 	r<   c                 .    U R                   R                  $ r   re  r  s    r:   r  8Starcoder2ForSequenceClassification.get_input_embeddings  rg  r<   c                 $    XR                   l        g r   re  r  s     r:   r  8Starcoder2ForSequenceClassification.set_input_embeddings  rj  r<   r  rs   ra   r   r  r{  r   r   r  r>   c
                    U R                  UUUUUUUU	S9n
U
R                  nU R                  U5      nUb  UR                  S   nOUR                  S   nU R                  R
                  c  US:w  a  [        S5      eU R                  R
                  c  SnOUb  XR                  R
                  :g  R                  UR                  [        R                  5      n[        R                  " UR                  S   UR                  [        R                  S9nUU-  R                  S5      nO.Sn[        R                  U R                  R                    S35        U[        R                  " XR                  S	9U4   nSnUb  U R#                  XUU R                  S
9n[%        UUU
R&                  U
R(                  U
R*                  S9$ )e  
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
    Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
    config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
    `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
rs   ra   r   r  r   r   r  Nr   r!   z=Cannot handle batch sizes > 1 if no padding token is defined.rQ   )r   rw   z will not detect padding tokens in `inputs_embeds`. Results may be unexpected if using padding tokens in conjunction with `inputs_embeds.`r!  )r_  r{  pooled_logitsr(   r~  )r   r"  r  rU   r(   r  r$  r}   r   rK   int32r&  argmaxr   r   r9   rG   r  r   r   r=   r#  )r7   r  rs   ra   r   r  r{  r   r   r  transformer_outputsr=   r_  r6  last_non_pad_tokennon_pad_masktoken_indicesr  r  s                      r:   rE   +Starcoder2ForSequenceClassification.forward  s   * 8<zz)%+'/!5 8B 	8
 ,==M* "+J&,,Q/J;;##+
a\]];;##+!#"%)A)AAEEfmmUZU`U`aL!LL)<V]]Z_ZeZefM"/,">!F!Fr!J!#>>**+ ,Z Z
 u||J}}MOaab%%VR_hlhshs%tD/ /??-;;*55
 	
r<   )r   r  r  rW  )rG   rH   rI   rJ   r-   r  r  r   r   r   rK   r   r   r   rL   r   r   rE   rM   rN   rO   s   @r:   r  r    s    '(  151537+/59-1$(,0/3A
E,,-A
 !.A
 u//0	A

 "%A
   1 12A
 ))*A
 D>A
 $D>A
 'tnA
 
*A
  A
r<   r  c                   *  ^  \ rS rSrU 4S jrS rS r\\         SS\	\
R                     S\	\
R                     S\	\
R                     S\	\   S	\	\
R                     S
\	\
R                     S\	\   S\	\   S\	\   S\4S jj5       5       rSrU =r$ ) Starcoder2ForTokenClassificationi9  c                   > [         TU ]  U5        UR                  U l        [        U5      U l        [        USS 5      b  UR                  nO[        USS 5      b  UR                  nOSn[        R                  " U5      U l
        [        R                  " UR                  UR                  5      U l        U R                  5         g )Nclassifier_dropouthidden_dropoutg?)r,   r-   r  r  r   r   r  r  r   DropoutrD   r/   r.   r  r  )r7   r(   r  r9   s      r:   r-   )Starcoder2ForTokenClassification.__init__;  s      ++$V,
6/6B!'!:!:V-t4@!'!6!6!$zz"45YYv1163D3DE
 	r<   c                 .    U R                   R                  $ r   re  r  s    r:   r  5Starcoder2ForTokenClassification.get_input_embeddingsK  rg  r<   c                 $    XR                   l        g r   re  r  s     r:   r  5Starcoder2ForTokenClassification.set_input_embeddingsN  rj  r<   r  rs   ra   r   r  r{  r   r   r  r>   c
                    U R                  UUUUUUUU	S9n
U
R                  nU R                  U5      nU R                  U5      nSnUb  U R	                  XU R
                  5      n[        UUU
R                  U
R                  S9$ )r  r  N)r  r_  r=   r#  )	r   r"  rD   r  r  r(   r   r=   r#  )r7   r  rs   ra   r   r  r{  r   r   r  r   sequence_outputr_  r  s                 r:   rE   (Starcoder2ForTokenClassification.forwardQ  s    * ,0::)%+'/!5 ,6 	,
 "33,,7O,%%fdkkBD$!//))	
 	
r<   )rD   r   r  r  rW  )rG   rH   rI   rJ   r-   r  r  r   r   r   rK   r   r   r   rL   r   r   rE   rM   rN   rO   s   @r:   r  r  9  s     '(  151537+/59-1$(,0/3*
E,,-*
 !.*
 u//0	*

 "%*
   1 12*
 ))**
 D>*
 $D>*
 'tn*
 
*
  *
r<   r  )r\  r  r   r  r  )Nr!   )r   )Ftypingr   r   r   r   r   rK   r   activationsr
   cache_utilsr   r   r   r   
generationr   modeling_attn_mask_utilsr   modeling_flash_attention_utilsr   modeling_layersr   modeling_outputsr   r   r   r   modeling_rope_utilsr   r   modeling_utilsr   r   processing_utilsr   utilsr   r   r   r   r    configuration_starcoder2r"   !torch.nn.attention.flex_attentionr#   integrations.flex_attentionr$   
get_loggerrG   r   Moduler&   rZ   re   r   r   rn   r   r   r   r   r   r   r  rZ  r\  r  r  __all__r   r<   r:   <module>r     s  6 : 9   ! O O ) > B 9  L F & h h 6  !!;J 
		H	%BII "(6	UU\\ 	U# 	U%,, 	U& %II%<<% 
% <<	%
 U\\*% % %4F)")) F)R07 0f<		 <D % % %: P/ P Pf ?,j > i
5 i
 i
X S
*C S
S
l C
'@ C
 C
Lr<   